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Abstract
Recent work on Epistemic Planning uses Dynamic Epis-
temic Logic (DEL) to formalise and solve multi-agent plan-
ning problems. DEL allows agents to take into account
knowledge of others by computing perspective shifts. So
far, perspective shifts are usually defined on explicit Kripke
models for S5.

Here we first generalise perspective shifts from S5 to K.
We then show how perspective shifts can be computed with-
out explicit Kripke models. Concretely, we define perspec-
tive shifting on symbolic structures and succinct models.
Both are compact representations proposed in the litera-
ture to speed up model checking DEL. Our definitions can
help to implement multi-agent epistemic planning more
efficiently in the future.

1 Introduction
Starting with Löwe, Pacuit, and Witzel [LPW11] and Bolan-
der and Andersen [BA11], researchers have argued for Dy-
namic Epistemic Logic (DEL) as a framework for epistemic
planning. A next step was taken by Engesser et al. [Eng+17]
who showed how to compute perspective shifts on Kripke
models and defined implicitly coordinated plans, where
agents not only know a plan, but also know that others
can execute their part. The method was further optimised
by partly the same authors using Monte-Carlo tree search
[Rei+19]. This helps for planning problems with many steps,
but the authors also say that the “most impactful limitation
is the memory consumption of the epistemic states” and
they “identified the size of the DEL models to be the reason
why [their] method is not able to solve larger problems”
[Rei+19].

The standard semantics for DEL are Kripke models and
action models where possible worlds and events are listed
explicitly “one by one”. In recent work — at first sight
unrelated to planning — researchers presented alternative
representations and semantics for DEL which help to speed
up model checking. The two main approaches are sym-
bolic structures based on Binary Decision Diagrams (BDDs)
[Ben+15] and succinct models based on Mental Programs
[CS17]. While the work on symbolic structures focused on
classical examples from the DEL literature (Muddy Chil-
dren etc.) and implementing the model checker SMCDEL
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[Gat19], the work on succinct models also includes theo-
retical results on the computational complexity. In particu-
lar, Charrier and Schwarzentruber [CS17] show that model
checking is still in PSPACE when using succinct models.
This is somewhat surprising, because many Kripke mod-
els and thus model checking inputs can be exponentially
smaller when represented succinctly. Given this practical
and theoretical success, it is natural to ask whether the new
representations can be useful for epistemic planning.

Here we show how perspective shifts can be done directly
within the compact representations. We hope that the result-
ing symbolic and succinct perspective shifts will allow us to
implement DEL planning more efficiently in the future.

This article is structured as follows. We first recall the
standard Kripke semantics for DEL in Section 2. Then we
summarise how Kripke models can be encoded in symbolic
structures and succinct models in Section 3 and 4, respec-
tively. In Section 5 we then give definitions of perspective
shifts for all three representations, with proofs that they are
equivalent. We conclude with ideas for future work.

Throughout the article we use the following definition of
Boolean formulas, substitution and quantification.

Definition 1. We denote a finite set of atomic propositions as
V and call it a vocabulary. To extend a vocabulary we define
fresh atomic variables using primes, as for example in p′.
Similarly, for a set of atoms V we define V ′ := {p′ | p ∈ V },
hence for example {p, q}′ = {p′, q′}.

The Boolean language over a vocabulary V is denoted
by LB(V ) and given by β ::= > | p | ¬β | β ∧ β where
p ∈ V . We use the usual connectives ⊥, ∨, → and↔ as
abbreviations.

We identify a Boolean valuation (also called assignment)
with the set of atoms s ⊆ V that it makes true and we write
s � β if s satisfies β.

For any p, ϕ and ψ, let [p 7→ ϕ]ψ denote the result of
replacing all occurrences of p with ϕ in ψ. Similarly, for
ordered lists P,Q ⊆ V , let [P 7→ Q]ψ denote the result of
simultaneously replacing each pi ∈ P with qi ∈ Q in ψ.

We use Boolean quantification as follows. For any p
and ϕ, we define ∃pϕ := [p 7→ >]ϕ ∨ [p 7→ ⊥]ϕ and
∀pϕ := [p 7→ >]ϕ ∧ [p 7→ ⊥]ϕ. For any finite set P =
{p1, . . . , pn} ⊆ V we define ∃Pϕ := ∃p1 . . . ∃pnϕ and
∀Pϕ := ∀p1 . . . ∀pnϕ.

Finally, we also apply primes to formulas to replace
atoms, for example ((p ∧ r)→ q)′ = ((p′ ∧ r′)→ q′).
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2 Dynamic Epistemic Logic

We now recall the syntax of DEL and the standard semantics
based on Kripke models.

2.1 Epistemic Language

In the whole article we fix a finite set of agents I .

Definition 2. Given a vocabulary V , the language of epis-
temic logic L(V ) extends the Boolean language LB(V )
from Definition 1 and is given by

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ

where p ∈ V , i ∈ I .

As usual, Kiϕ should be read as “agent i knows that ϕ”.
For simplicity we do not include common knowledge here
but refer to Ditmarsch, Hoek, and Kooi [DHK07] for more
expressive variants of DEL including it.

2.2 Kripke Models

Definition 3. A frame is a tupleM = (W,R), where W
is a finite set of possible worlds and each Ri ⊆W ×W is
the accessibility relation for agent i.

A Kripke model for a vocabulary V is a tuple M =
(W,R,Val), where (W,R) is a frame and Val : W → P(V )
is called the valuation function.

A model is S5 iff all Ri are equivalence relations. In this
case we also write ∼i for Ri.

A pointed model is a pair (M, w) where w ∈ W and a
multi-pointed model is a pair (M, ω) where ω ⊆W .

Definition 4. Semantics forL(V ) on pointed Kripke models
are given inductively as follows.

1. (M, w) � > always holds.

2. (M, w) � p iff p ∈ Val(w).

3. (M, w) � ¬ϕ iff not (M, w) � ϕ.

4. (M, w) � ϕ ∧ ψ iff (M, w) � ϕ and (M, w) � ψ

5. (M, w) � Kiϕ iff for all v ∈ W we have that Riwv
implies (M, v) � ϕ.

Example 5. Let M = (W,R,Val) be the Kripke model
given by W = {0, 1, 2, 3} and R (for agents a and b) and
Val as shown:

0: p, q 1: p

2: q 3:

a

a
b b

We have (M, 0) � p ∧ q ∧Kap ∧ ¬Kbp ∧Kbq ∧ ¬Kaq.

2.3 Actions and Product Updates

Definition 6. An action model (sometimes called event
model) is a tupleA = (A,RA, pre, post) whereA is a finite
set of events, RAi ⊆ A × A for each i, pre : A → L(V )
assigns to each event a precondition and post : A× V →
LB(V ) at each event assigns to each atom a postcondition.
An action model is S5 iff all RAi are equivalence relations.

Given a Kripke modelM and an action model A, their
product isM×A := (W new, Rnew

i ,Valnew) where

• W new := {(w, a) ∈W ×A | M, w � pre(a)}

• Rnew
i :=

{
((w1, a1), (w2, a2)) | Riw1w2 and

RAi a1a2

}
• Valnew((w, a)) := {p ∈ V | M, w � post(a, p)}

An action is a pair (A, a) where a ∈ A. To update a
pointed Kripke model with an action we define (M, w)×
(A, a) := (M×A, (w, a)).

A multi-pointed action is a pair (A, α) where α ⊆ A. To
update a multi-pointed Kripke model with a multi-pointed
action we let (M, ω) × (A, α) := (M × A, {(w, a) ∈
ω × α | (M, w) � pre(a)}).

Definition 7. Given a vocabulary V , the language of Dy-
namic Epistemic Logic LD(V ) extends L(V ) with dynamic
operators for action models and is given by

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [A, a]ϕ

where p ∈ V , i ∈ I and (A, a) is an action as in Defini-
tion 6.

Definition 8. We interpret dynamic operators for action
models as follows:

(M, w) � [A, a]ϕ iff
M, w � pre(a)
impliesM×A, (w, a) � ϕ

Example 9. LetM be the Kripke model from Example 5
and let A be the action model shown below. This action
model consists of two events and we denote their precondi-
tions with ?ϕ. We do not show any postconditions which is
meant to indicate that post(a, p) = p for all a and all p.

a1: ?(p→ q) a2: ?(¬(p→ q))b

Intuitively, this action (A, {a1, a2}) tells agent a whether
p→ q is true. Moreover, agent b does not learn the value of
p→ q, but b still learns that a learns whether p→ q.

We show the resulting model (M, {0}) × (A, {a1, a2})
below. Because in (M, 0) agent b already knew that q, we
have (M, 0) � [A, {a1, a2}]KbKa(p→ q).

(0, a1): p, q (1, a2): p

(2, a1): q (3, a1):
a

b b
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3 DEL on Symbolic Structures
Inspired by symbolic model checking methods developed
for temporal logics, symbolic structures for DEL were first
presented by Benthem et al. [Ben+15] for S5 with group
announcements and later generalised to weaker logics and
action models [Ben+18]. We now summarise the basic
definitions, but refer to Gattinger [Gat18] for details.

The main idea of symbolic representation is to never spell
out the set of all possibilities, in our case the set of all
possible or reachable worlds in a Kripke model. Instead, we
try to work with a compact representation that contains just
enough information to evaluate all formulas, but does away
with irrelevant information. For example, the valuation at a
world matters, but whether a world is called ‘v’, ‘w’, ‘0’ or
‘42’ does not matter for the truth of any formula.

We use Boolean formulas to define and modify these
compact representations, but this is only for simplicity. As
described by Benthem et al. [Ben+18] we only care about
the Boolean function and not the particular syntax of a for-
mula. An actual implementation such as SMCDEL [Gat19]
uses Binary Decision Diagrams (BDDs) as introduced by
Bryant [Bry86], instead of formulas.

3.1 Knowledge and Belief Structures
Definition 10. A knowledge structure is a tuple F =
(V, θ,O) where V is a finite vocabulary, θ ∈ LB(V ) is
the state law and Oi ⊆ V for each i ∈ I are the observable
variables.

A state of F is a Boolean assignment s ⊆ V such that
s � θ. A pointed knowledge structure is a tuple (F , s) where
s is a state of F . A multi-pointed knowledge structure is a
tuple (F , σ) where σ ∈ LB(V ).

Definition 11. For any knowledge structure F = (V, θ,O)
we define the S5 modelM(F) := (W,R,Val) by:

• W := {s ⊆ V | s � θ}

• Ri := {(s, t) ∈W ×W | s ∩Oi = t ∩Oi}

• Val(s) := s

Definition 12. A belief structure is a tuple F = (V, θ,Ω)
where V and θ are as in Definition 10 and for each agent i
we have an observation law Ωi ∈ LB(V ∪V ′). Analogously
to Definition 10 we call (F , s) a pointed belief structure
and (F , σ) a multi-pointed belief structure.

Definition 13. For any belief structure F = (V, θ,Ω) we
define the Kripke modelM(F) := (W,R,Val) where W
and Val are defined as in Definition 11 and

• Rist iff s ∪ t′ � Ωi.

Example 14. The following knowledge structure encodes
the Kripke model given in Example 5:

(V = {p, q}, θ = >, Oa = {p}, Ob = {q})

The same model is also encoded by this belief structure:

(V = {p, q}, θ = >,Ωa = p↔ p′, Ωb = q ↔ q′)

Suppose we add another atomic proposition r that can be
true or false independent of p and q. Moreover, suppose r is
not known or observed by any of the two agents. This dou-
bles the number of possible worlds in the Kripke model from
4 to 8, but only increases the size of the symbolic structures
by one element in V . This illustrates that symbolic struc-
tures can be exponentially smaller than the Kripke model
they encode.

For simplicity, here we interpret L(V ) on symbolic struc-
tures by defining (F , s) � ϕ :⇔ (M(F), s) � ϕ. In
practice however, evaluating a formula on a symbolic struc-
ture by first ‘unravelling’ it to a Kripke model defeats the
purpose of having a more compact representation. Instead,
we should evaluate formulas on symbolic structures directly.
This is possible because on a given knowledge structure any
modal formula is equivalent to a purely Boolean formula.

Theorem 15. For any belief or knowledge structure F there
is a translation ‖ · ‖F : L(V ) → LB(V ) such that for all
ϕ ∈ L(V ) and all states s � θ we have F , s � ϕ iff
s � ‖ϕ‖F .

Proof Sketch. For knowledge structures we translate Ki by
quantifying over what i does not observe. Formally, let
‖Kiϕ‖F := ∀(V \Oi)(θ → ‖ϕ‖F ).

Similarly, for belief structures we can define the transla-
tion ‖Kiϕ‖F := ∀V ′(θ′ → (Ωi → ‖ϕ‖′F )).

See Benthem et al. [Ben+18] for detailed proofs.

3.2 Transformers
The symbolic equivalent of action models are transformers.
For brevity here we only consider knowledge transformers
which encode S5 action models without post-conditions.
Still, our definitions of perspective shifts easily transfer to
the more general definitions given in Sections 2.7 and 2.8
of [Gat18].

Definition 16. A knowledge transformer for the vocabulary
V is a tuple F = (V +, θ+, O+) where V + is a finite set
of fresh atoms disjoint with V , θ+ ∈ L(V ∪ V +) is the
event law and O+

i ⊆ V + for each i ∈ I are the observable
variables.

A multi-pointed transformer is a tuple (X , σ+) where
σ+ ∈ LB(V ∪ V +). The transformation of a multi-pointed
knowledge structure with a multi-pointed knowledge trans-
former is defined as:

((V , θ , Oi ), σ )
× ((V + , θ+ , O+ ), σ+ )

:= ((V ∪ V +, θ ∧ ‖θ+‖F , Oi ∪O+
i ), σ ∧ σ+)

Similar to how symbolic structures for a vocabulary V en-
code Kripke models where the worlds are from P(V ), trans-
formers use the atoms from V + to encode action models
where the events are elements ofP(V +). We give one exam-
ple below and refer to Gattinger [Gat18] for translations to
go back and forth between action models and transformers.

Example 17. The S5 action model A from Example 9 can
be encoded by the knowledge transformer

X =
(
V + = {r}, θ+ = r ↔ (p→ q), O+

a = {r}
O+
b = ∅

)
and (A, {a1, a2}) is encoded by (X , σ+ = >).
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4 DEL on Succinct Models
Similar to symbolic structures, succinct models for DEL
were introduced to represent Kripke models more efficiently.
We will now summarise the main definitions needed to also
define perspective shifts in this framework. For more details
and explanations we refer to the references given in the
following subsection, and especially Charrier [Cha18].

4.1 Mental Programs
Before defining succinct models we need to introduce men-
tal programs. They describe which and how truth values of
atoms can be changed to reach other states.

Mental programs use a syntax similar to Propositional
Dynamic Logic (PDL) and were first presented by Charrier
and Schwarzentruber [CS15] with this grammar:

π ::= p← > | p← ⊥ | β? | π;π | π ∪ π

Another grammar for programs is used by Charrier, Pinchi-
nat, and Schwarzentruber [CPS19] where they are called
‘accessibility programs’:

π ::= p← β | β? | π;π | π ∪ π

Charrier and Schwarzentruber [CS17] use yet another gram-
mar for mental programs. It includes an inversion operator
that is used to define succinct product updates:

π ::= p← β | β? | π;π | π ∪ π | π ∩ π | π−1

Before discussing the differences between these grammars
and deciding which one we will use here, we define seman-
tics covering all three grammars.

Definition 18 (Semantics of Mental Programs). We define
the relation π→ ⊆ P(V ) × P(V ) by induction over the
structure of π.

s
p←>−→ t :⇐⇒ t = s ∪ {p}

s
p←⊥−→ t :⇐⇒ t = s \ {p}

s
β?−→ t :⇐⇒ t = s and s � β

s
p←β−→ t :⇐⇒ t = s ∪ {p} and s � β or

t = s \ {p} and s 2 β
s
π−1

−→ t :⇐⇒ t
π−→ s

s
π1;π2−→ t :⇐⇒ ∃u ⊆ V : s π1−→ u

π2−→ t

s
π1∪π2−→ t :⇐⇒ s

π1−→ t or s π2−→ t

s
π1∩π2−→ t :⇐⇒ s

π1−→ t and s π2−→ t

We now show how two of the operators in the grammar of
mental programs can be removed. Assignments of β and
inverse do not add expressivity to mental programs.

Lemma 19. For any π1 there is a π2 that uses neither
p ← β nor π−1 such that for all states s, t ⊆ V , we have
s

π1−→ t iff s π2−→ t.

Proof. We define a translation by induction. For assign-
ments of non-constant Boolean formulas, note that p← β
is equivalent to (β?; p ← >) ∪ (¬β?; p ← ⊥) accord-
ing to the semantics in Definition 18. Hence in particular

the grammars from Charrier and Schwarzentruber [CS15]
and Charrier, Pinchinat, and Schwarzentruber [CPS19] are
equally expressive.

t(p← >) := p← >
t(p← ⊥) := p← ⊥
t(p← β) := (β?; p← >) ∪ (¬β?; p← ⊥)
t(β?) := β?
t(π1;π2) := t(π1); t(π2)
t(π1 ∪ π2) := t(π1) ∪ t(π2)
t(π1 ∩ π2) := t(π1) ∩ t(π2)

To also remove the inversion operators we distinguish dif-
ferent subcases:

t((p← >)−1) := p?; (p← >) ∪ (p← ⊥)
t((p← ⊥)−1) := ¬p?; ((p← >) ∪ (p← ⊥))
t((β?)−1) := β?
t((π1;π2)−1) := t(π−1

2 ); t(π−1
1 )

t((π1 ∪ π2)−1) := t(π−1
1 ) ∪ t(π−1

2 )
t((π1 ∩ π2)−1) := t(π−1

1 ) ∩ t(π−1
2 )

t((π−1
1 )−1) := t(π1)

One now checks that s π−→ t iff s
t(π)−→ t.

Eliminating the inverse operator in mental programs is simi-
lar to “pushing down” the converse operator in PDL with
converse, also known as CPDL.1 See for example [DM00,
Section 3] where converse is restricted to atomic programs,
using abbreviations similar to t(·) above. Whereas in PDL
an atomic converse a− cannot be rewritten further, in men-
tal programs the atomic programs are assignments and
(p← β)−1 can still be rewritten as above.

Motivated by Lemma 19, in the rest of this article we use
the following grammar for mental programs. This is mainly
to simplify our definitions in Section 5.3. For implementa-
tions it can still be more efficient to define other operators
as primitives and not as abbreviations.

π ::= p← > | p← ⊥ | β? | π;π | π ∪ π | π ∩ π

Intuitively, observation laws used in the previous section
describe what has to be true at each of two states s and t for
them to be connected. In contrast, mental programs focus
on which changes are allowed to go from s to t. Mathemati-
cally, both are just different ways to describe the same thing:
relations over P(V ). But in actual model checking or DEL
planning implementations the difference will matter.

4.2 Succinct Models
Definition 20. A succinct model for a vocabulary V is a
vector ~π where each πi is a mental program over V .

A pointed succinct model is a tuple (~π, s) where s ⊆ V .
A multi-pointed succinct model is a tuple (~π, σ) where σ ∈
LB(V ).

We note that Charrier, Pinchinat, and Schwarzentruber
[CPS19] call succinct models ‘symbolic’. To avoid con-
fusion with symbolic structures, here we follow Charrier
and Schwarzentruber [CS17] and always call ~π a succinct
model.

1This connection was pointed out to me by one of the anonymous
reviewers.
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Definition 21. For any succinct model ~π we define the
Kripke modelM(~π) = (W,R,Val) by

• W := P(V )

• Rist :⇔ s
πi−→ t

• Val(s) := s

Example 22. The Kripke model from Example 5 is encoded
by the succinct model ~π given by:

πa = (q ← >) ∪ (q ← ⊥)
πb = (p← >) ∪ (p← ⊥)

The multi-pointed model (M, ω) with ω = {0} is encoded
by (~π, p ∧ q).

We encourage the reader to compare this with the sym-
bolic structures in Example 14. Clearly, the πi play the
same role as Ri in Kripke models and Oi or Ωi in symbolic
structures. But succinct models do not have a counterpart of
W in Kripke models or θ in symbolic structures. Succinct
models always encode a set of worlds which is the powerset
of the vocabulary, i.e. W = P(V ), whereas in a symbolic
structure the encoded set of worlds is given by θ, namely
W = { s ⊆ V | s � θ } which can be a proper subset of
P(V ). The fact that succinct models always encode the full
set of worlds does not matter for the semantics: whether a
world is unreachable or does not even exist does not affect
the truth of any formula at reachable worlds. One might
thus also say that in a succinct model the set of worlds (that
are semantically relevant) consists of all the states that all
πi together can reach.

Just as with symbolic structures for simplicity we inter-
pret L(V ) on succinct models by defining (~π, s) � ϕ :⇔
(M(~π), s) � ϕ. In practice formulas should be evaluated
directly on succinct models, not via the unravelling to a
Kripke model — see Charrier and Schwarzentruber [CS17]
and Charrier, Pinchinat, and Schwarzentruber [CPS19].

4.3 Succinct Actions
Action models can also be encoded succinctly. We only
state the main definition here, adjusted to our notation.

Definition 23. A succinct action model for the vocabulary
V is a tuple (V +, ξA, ~πA, post) where V + is a set disjoint
from V , ξA is a formula over V ∪ V +, ~πA is a vector
of mental programs over V ∪ V +, and post is a mental
program over V ∪ V +.

For translations between explicit and succinct action models,
see Section 3.3, and for the succinct product update, see
Section 3.4 of Charrier and Schwarzentruber [CS17].

5 Perspective Shifts
To use DEL for multi-agent epistemic planning it is nec-
essary to consider the perspective of different agents. We
recall an example from Engesser et al. [Eng+17]: Anne
wants to let Bob into her flat while she is away. She can
put the keys under the door mat, but for an implicitly coor-
dinated plan she also has to inform Bob that this is where

he will find the keys. To find such plans in general we need
a way to compute perspective shifts: What is the situation
as seen by Anne or Bob? After this action, what will Anne
know about what Bob knows?

5.1 Explicit Perspective Shifts
To formalise the idea of ‘taking the perspective of another
agent’ Engesser et al. [Eng+17] define the local state of an
agent in a model as follows.

Definition 24. Given a multi-pointed S5 model (M, ω), the
local state of agent i is:

ωi := {v ∈W | ∃w ∈ ω : w ∼i v}

Example 25. In (M, {0}) where M is the model from
Example 5, the local states of agents a and b are:

{0}a = {0, 1} {0}b = {0, 2}

We can also nest the operator (·)i to talk about higher-level
perspectives. Starting with {0} we have

({0}a)b = {0, 1}b = {0, 1, 2, 3}

This means that from the perspective of agent a the local
state of b is the whole model. To make it explicit: If 0 is the
actual world, then a considers 0 and 1 possible and thereby
considers it possible that b considers any of 0, 1, 2, and 3
possible.

The local state and the knowledge of an agent are clearly
related: an agent knows that something is true iff it is true
at all worlds in their local state.

Proposition 26 (Proposition 1 from Engesser et al.
[Eng+17]). For any state ω we have ωi � ϕ iff ω � Kiϕ.

Engesser et al. [Eng+17] only consider S5 models where all
accessibility relations are equivalence relations. It is easy
to generalise the definition of local states to Kripke models
where not all Ri have to be equivalence relations.

Definition 27. Given a multi-pointed Kripke model (M, ω),
the local state of agent i is

ωi := {v ∈W | ∃w ∈ ω : (w, v) ∈ Ri}

Intuitively, the local state ωi is given by Ri(ω) and consists
of all those worlds an agent considers possible if the actual
world is an element of ω. However, some natural properties
of local states no longer hold in the general setting.

Fact 28. For S5 models we have ω ⊆ ωi, but this is not the
case when Ri is not reflexive. Moreover, (·)i is idempotent
for S5 models, but it is not if Ri is not transitive.

Still, there are non-S5 settings where it makes sense to talk
about perspective shifts and even nested ones.

Example 29. In the following Kripke model agent a has
a false belief that p is true. In fact, a believes that p is
common knowledge among a and b.
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0: 1: p

2: pa b

a a

b
b b

Given the actual state ω = {0}, the local states are:

ωa = {2}

ωb = {0, 1}

(ωb)a = {0, 1}a = {2}

Kripke models only cover the static “EL” part of DEL. For
the dynamic part we also need to describe how an action is
perceived by an agent. Given the similarity between Kripke
models and action models, this is quite easy. The following
is essentially Definition 27 for action models.

Definition 30. Given a multi-pointed action model (A, α),
the local action of i is {b ∈ A | ∃a ∈ α : RAi ab}.

5.2 Symbolic Perspective Shifts
To work efficiently with local states in a planning tool, we
want to avoid iterating over explicit lists of worlds. We now
show how perspective shifts can be computed on symbolic
structures from Section 3.

In the S5 setting we can exploit symmetry as follows.

Definition 31. Given a multi-pointed knowledge structure
(F , σ) where F = (V, θ,O), the symbolic local state of i is
given by:

σi := ∃(V \Oi)(θ ∧ σ)

Example 32. Consider (F , σ = p ∧ q) where F is the
knowledge structure from Example 14, encoding the Kripke
model from Example 5. The local states here are:

σa ≡ ∃(V \Oa)(σ ∧ θ) ≡ ∃q(p ∧ q) ≡ p

σb ≡ ∃(V \Ob)(σ ∧ θ) ≡ ∃p(p ∧ q) ≡ q

The attentive reader will note how Definition 31 corresponds
to Definition 24. Concretely, σ corresponds to ω, the Oi
play the role of ∼i and θ is the restriction to W .

We could also have defined σi := θ ∧ ∃(V \Oi)(θ ∧ σ),
but this would be redundant: For any σ the tuples (F , σ)
and (F , σ ∧ θ) denote the same multi-pointed knowledge
structure. In fact, SMCDEL [Gat19] uses the opposite di-
rection to minimise knowledge structures: we can restrict
the BDD of σ to what is not already implied by θ. In belief
structures the same optimisation can be applied to each Ωi.

We now state and prove that Definition 31 not only works
for simple examples such as the above, but that it is always
truthful, i.e. that explicit and symbolic perspective shifts
agree with each other.

Theorem 33. Suppose we have a multi-pointed knowledge
structure (F , σ). Consider the encoded multi-pointed S5
model (M(F), ω) where ω := {s ⊆ V | s � θ ∧ σ}. Then
we have for all s ⊆ V :

s is a state of F and s � σi ⇐⇒ s ∈ ωi

Proof. We have the following chain of equivalences:

s is a state of F and s � σi

⇔ s � θ ∧ σi
⇔ s � θ ∧ ∃(V \Oi)(θ ∧ σ)
⇔ s ∈W and s � ∃(V \Oi)(θ ∧ σ)
⇔ s ∈W and ∃t ⊆ V : t � θ ∧ σ and t ∩Oi = s ∩Oi
⇔ s ∈W and ∃t ∈ ω : t ∼i s
⇔ s ∈ ωi

For the general setting of K instead of S5, recall that we
encode the relation of each agent with a boolean formula
over a double vocabulary: Ωi ∈ LB(V ∪V ′). To define local
states using these formulas we need to invert the encoded
relation. For this we simultaneously (un)prime all atomic
propositions. Formally, let Ω^i := [V ∪ V ′ 7→ V ′ ∪ V ]Ωi.
This includes a slight abuse of notation: ’∪’ should be
read as concatenation of ordered lists here, instead of a
union of sets. For example, we have ((p ∧ ¬q′) ∨ q)^ =
((p′ ∧ ¬q) ∨ q′).

Definition 34. Given a multi-pointed belief structure (F , σ)
where F = (V, θ,Ω), the symbolic local state of agent i is
given by:

σi := ∃V ′(θ′ ∧ σ′ ∧ Ω^i )

Example 35. The Kripke model from Example 29 is en-
coded by this belief structure:

(V = {p, q}, θ = q → p, Ωa = q′, Ωb = q ↔ q′)

Note that we need an extra atomic variable q here, because
the Kripke model contains two worlds with the same valua-
tion (1 and 2). There are many ways to add extra variables,
yielding different state and observation laws. Our choice
here is to make q true only at world 2.

Consider the actual state σ = ¬p ∧ ¬q corresponding to
{0} in Example 29. We can now compute the local states
and perspective shifts mentioned above symbolically:

σa = ∃V ′ (θ′ ∧ σ′ ∧ Ω^a )
= ∃{p, q}′ ((q → p)′ ∧ (¬p ∧ ¬q)′ ∧ (q′)^)
= ∃p′ ∃q′ ((q′ → p′) ∧ (¬p′ ∧ ¬q′) ∧ q)
= q

σb = ∃V ′ (θ′ ∧ σ′ ∧ Ω^b )
= ∃{p, q}′ ((q → p)′ ∧ (¬p ∧ ¬q)′ ∧ (q ↔ q′)^)
= ∃p′ ∃q′ ((q′ → p′) ∧ (¬p′ ∧ ¬q′) ∧ (q′ ↔ q))
= ¬q

(σb)a = (¬q)a
= ∃V ′ (θ′ ∧ (¬q)′ ∧ Ω^a )
= ∃V ′ ((q → p)′ ∧ ¬q′ ∧ (q′)^)
= ∃V ′ ((q′ → p′) ∧ ¬q′ ∧ q)
= ∃V ′ (q ∧ ¬q′)
= q

This corresponds to the explicit local states: σa = q encodes
ωa = {2} and σb = ¬q encodes ωb = {0, 1}.

Similar to Theorem 33 the following theorem states that
Definition 34 does what we want and is correct not only in
Example 35, but in general.
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Theorem 36. Suppose we have a multi-pointed belief struc-
ture (F , σ). Consider the encoded multi-pointed model
(M(F), ω) where ω := {s ⊆ V | s � θ ∧ σ}. Then for all
s ⊆ V we have:

s is a state of F and s � σi ⇐⇒ s ∈ ωi

Proof. Intuitively, a state s satisifes σi iff it can be reached
via the relation encoded by Ωi from a state t which satisfies
σ. We have the following chain of equivalences:

s � θ ∧ σi
⇔ s � θ ∧ ∃V ′(θ′ ∧ σ′ ∧ Ω^i )
⇔ s � θ and s � ∃V ′(θ′ ∧ σ′ ∧ Ω^i )
⇔ s ∈W and ∃t′ ⊆ V ′ : s ∪ t′ � (θ′ ∧ σ′ ∧ Ω^i )
⇔ s ∈W and ∃t ⊆ V : t ∪ s′ � (θ ∧ σ ∧ Ωi)
⇔ s ∈W and ∃t ⊆ V : t � θ ∧ σ and t ∪ s′ � Ωi
⇔ s ∈W and ∃t ∈ ω : Rist
⇔ s ∈ ωi

Before we conclude this section, it remains to define local
states for transformers, the symbolic analogue of Defini-
tion 30.

Definition 37. Given a multi-pointed knowledge trans-
former (X , σ+) where X = (V +, θ+, O+), the symbolic
local action for i is ∃(V \O+)(θ+ ∧ σ+).

Clearly, this is analogous to Definition 31, using compo-
nents of X instead of F . For more general (belief) trans-
formers the definition would be analogous to Definition 34.

5.3 Succinct Perspective Shifts
We now turn again to succinct models. Here we can also
compute perspective shifts directly, without going back and
forth to an explicit Kripke model.

Definition 38. Given a succinct multi-point σ and a mental
program π, we define the localisation σπ by induction over
the structure of π:

σp←> := ∃p(σ) ∧ p
σp←⊥ := ∃p(σ) ∧ ¬p
σβ? := σ ∧ β
σ(π1;π2) := (σπ1)π2

σ(π1∪π2) := σπ1 ∨ σπ2

σπ1∩π2 :=
∨
s⊆V ((βs ∧ σ)π1 ∧ (βs ∧ σ)π2)

where βs :=
∧
s ∧
∧
{¬p | p ∈ V \ s} for any s ⊆ V .

Given a multi-pointed succinct model (~π, σ), the succinct
local state of i is given by σπi .

The clause for ∩ in Definition 38 can unfortunately yield
exponentially longer formulas. At first sight it seems that
σπ1∩π2 := σπ1 ∧ σπ2 would be a better choice, but this
would invalidate Lemma 41 below. The βs formulas are
needed to ensure that whenever t � σπ1∩π2 , the state t
can not just be reached via π1 and π2 from some (possibly
different) states s1 and s2 satisfying σ, but it can be reached
from one and the same s via both mental programs.

The mental programs πi for agents in succinct models
are usually ∩-free anyway: Charrier and Schwarzentruber
[CS17] only use ∩ to define postconditions. Hence we only
include ∩ here for the sake of completeness and do not
worry about the resulting complexity of the translation.

Example 39. Consider the succinct model ~π from Exam-
ple 22, encoding the Kripke model from Example 5. Given
the state σ = p∧ q, the succinct local state of a can then be
computed as follows:

σπa = (p ∧ q)((q←>)∪(q←⊥))

= (p ∧ q)(q←>) ∨ (p ∧ q)(q←⊥)

= ( (∃q(p ∧ q)) ∧ q) ∨ ( (∃q(p ∧ q)) ∧ ¬q)
= (p ∧ q) ∨ (p ∧ ¬q)
= p

Analogously we have σπb = (p ∧ q)((p←>)∪(p←⊥)) = q.

Example 40. As a second example we encode the Kripke
model from Example 29 as a succinct model. First note
that similar to the symbolic encoding given in Example 35
we need an additional atom q to be able to encode the two
worlds with the same valuation. The vocabulary of the
succinct model is thus V = {p, q} and ~π is given by:

πa = (p← >); (q ← >)

πb = (q?) ∪ (¬q?; ((p← >) ∪ (p← ⊥)))
Again note that the actual state is given by σ = ¬p ∧ ¬q.
The succinct local states of the two agents and the nested
local state can thus be computed by:

σπa

= (¬p ∧ ¬q)((p←>);(q←>))

=
(

(¬p ∧ ¬q)(p←>)
)(q←>)

= ( (∃p(¬p ∧ ¬q)) ∧ p)(q←>)

= (¬q ∧ p)(q←>)

= (∃q(¬q ∧ p)) ∧ q
= p ∧ q

σπb

= (¬p ∧ ¬q)((q?)∪(¬q?;((p←>)∪(p←⊥))))

= (¬p ∧ ¬q)(q?) ∨ (¬p ∧ ¬q)(¬q?;((p←>)∪(p←⊥)))

= ((¬p ∧ ¬q) ∧ q) ∨
(

(¬p ∧ ¬q)(¬q?)
)((p←>)∪(p←⊥))

= ((¬p ∧ ¬q) ∧ ¬q)((p←>)∪(p←⊥))

= (¬p ∧ ¬q)(p←>) ∨ (¬p ∧ ¬q)(p←⊥)

= (∃p(¬p ∧ ¬q) ∧ p) ∨ (∃p(¬p ∧ ¬q) ∧ ¬p)
= (¬q ∧ p) ∨ (¬q ∧ ¬p)
= ¬q

(σπb)πa

= (¬q)πa

= (¬q)((p←>);(q←>))

=
(

(¬q)(p←>)
)(q←>)

= ( (∃p(¬q)) ∧ p)(q←>)

= (¬q ∧ p)(q←>)

= (∃q(¬q ∧ p)) ∧ q
= p ∧ q

To conclude this section we prove that succinct perspective
shifts agree with the explicit definition not only for these
examples but in general.

Lemma 41. For all multi-points σ and mental programs π
and states s, t ⊆ V we have:

t � σπ ⇐⇒ ∃s : s � σ and s π→ t
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Proof. By induction over π. For the base case where π =
p← > we have this chain of equivalences:

t � σ(p←>)

⇔ t � ∃p(σ) ∧ p
⇔ t � ∃p(σ) and t � p
⇔ ∃s : s � σ and t = s ∪ {p}
⇔ ∃s : s � σ and s

p←>−→ t

The second base case π = p← ⊥ is similar. For the third
case π = β? we have:

t � σβ?

⇔ t � σ ∧ β
⇔ ∃s : s � σ and t = s and s � β

⇔ ∃s : s � σ and s
β?−→ t

For the induction step, first consider the ;-case. We have the
following chain of equivalences, where the second and third
step follow from the induction hypothesis.

t � σ(π1;π2)

⇔ t � (σπ1)π2

⇔ ∃u : u � σ(π1) and u π2→ t

⇔ ∃u ∃s : s � σ and s π1→ u
π2→ t

⇔ ∃s : s � σ and s
π1;π2−→ t

Second, consider ∪. In the following chain the third step
follows from the induction hypothesis.

t � σ(π1∪π2)

⇔ t � σ(π1) ∨ σ(π2)

⇔ t � σ(π1) or t � σ(π2)

⇔ (∃s : s � σ and s π1→ t) or (∃s : s � σ and s π2→ t)
⇔ ∃s : s � σ and (s π1→ t or s π2→ t)
⇔ ∃s : s � σ and s π1∪π2→ t

Finally, consider ∩. In the following chain, the third equiv-
alence is by induction hypothesis. The fourth equivalence
holds because whenever sn � βs then we have sn = s.

t � σ(π1∪π2)

⇔ t �
∨
s⊆V ((βs ∧ σ)π1 ∧ (βs ∧ σ)π2)

⇔ ∃s : t � (βs ∧ σ)π1 ∧ (βs ∧ σ)π2

⇔ ∃s :
(
∃s1 : s1 � βs ∧ σ and s1

π1→ t and
∃s2 : s2 � βs ∧ σ and s2

π2→ t

)
⇔ ∃s : s � σ and s π1→ t and s π2→ t

⇔ ∃s : s � σ and s π1∩π2→ t

The following Theorem connects succinct with explicit per-
spective shifts, similar to Theorems 33 and 36 for symbolic
perspective shifts.

Theorem 42. Take any multi-pointed succinct model (~π, σ)
and consider the encoded Kripke model (M(π), ω) where
ω := {s ⊆ V | s � σ}. Then we have for all s ⊆ V :

s � σπi ⇐⇒ s ∈ ωi

Proof. By Lemma 41.

6 Conclusion
We presented definitions to compute perspective shifts di-
rectly on symbolic structures and succinct models for DEL.
For each definition we gave examples and proved its cor-
rectness, i.e. that it agrees with the original definition on
explicit Kripke models.

Admittedly, this work is mainly an exercise in finding the
right definitions and notation. In hindsight, nothing here is
surprising. Still, it is educational to see which operations
can be done without ‘unravelling’.

The next step is clear: the definitions of symbolic and
succinct perspective shifts should be implemented and used
in an epistemic planning tool. As a first step we extended
SMCDEL [Gat19] with symbolic perspective shifts based
on Definitions 31 and 34.

Computing perspective shifts directly on compact repre-
sentations should make DEL planning tools more efficient
and allow us to solve larger problems. For example, in
the cooperative card game Hanabi used by Reifsteck et al.
[Rei+19] the number of possible worlds grows exponen-
tially in the number of agents and cards per hand. With
compact representations it should be possible to deal with
larger examples, and possibly even the real game with up to
60 cards.
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