
Token-based Execution Semantics for Multi-Agent Epistemic Planning

Thorsten Engesser , Robert Mattmüller , Bernhard Nebel , Felicitas Ritter
University of Freiburg, Germany

{engesser,mattmuel,nebel,ritterf}@cs.uni-freiburg.de

Abstract

Epistemic planning has been employed as a means to achieve
implicit coordination in cooperative multi-agent systems
where world knowledge is distributed between the agents,
and agents plan and act individually. However, recent work
has shown that even if all agents act with respect to plans
that they consider optimal from their own subjective perspec-
tive, infinite executions can occur. In this paper, we analyze
the idea of using a single token that can be passed around
between the agents and which is used as prerequisite for act-
ing. We show that introducing such a token to any planning
task will prevent the existence of infinite executions. We fur-
thermore analyze the conditions under which solutions to a
planning task are preserved under our tokenization.

1 Introduction
Epistemic implicit coordination planning (Engesser et al.
2017) is a technique for planning and coordination in multi-
agent systems in which agents try to collaboratively reach
a joint goal. The knowledge and abilities required to reach
the goal can be distributed among the agents. With no cen-
tralized coordination instance and without the possibility for
the agents to agree on a joint plan, the agents need to plan
individually and execute their plans in a decentralized way.

A central assumption Engesser et al. (2017) make for their
notion of policies and policy execution is that actions are ap-
plied in sequence by the agents. However, the order in which
agents are allowed to act is not preimposed, i.e., situations
where multiple agents have an applicable action are allowed.

The advantage of this kind of sequentiality over joint ac-
tions is that for a problem to be solvable, solution existence
does not have to be common knowledge between all agents.
Instead, only the agent that performs the first action of a plan
has to know that the plan leads to the goal and that after the
execution of the first action, the next agent who is designated
to act will know, and so on. This is helpful since often it is
not known in advance which orders of agents will work. In
such cases, any agent that finds a plan can begin, with the
other agents waiting until they have sufficient information.

One issue with this approach is that agents who each plan
for themselves and act according to their own policies may
want to act at the same time. These kinds of “conflicts of
interest” are not considered at the policy level but at the ex-
ecution level. Since the idea of planning for implicit coor-

Anne Bill

Figure 1: Two agents and a lever.

dination is that there should be no centralized instance co-
ordinating the agents, one has to consider all possible exe-
cutions resulting from each order in which the agents could
act, given each of their individual plans. While this inter-
leaving semantics is harmless in some cases, in other cases
it results in agents inadvertently working against each other.

Consider, for example, the situation depicted in Figure 1,
in which a lever can be pulled left or right, with both the
leftmost and the rightmost position being a goal state. If
Anne’s plan is to pull the lever all the way to the left and
Bill’s plan is to pull the lever all the way to the right, there
are executions in which the lever is pulled back and forth
indefinitely. An obvious fix that works in this particular in-
stance is to require the agents to act only with respect to
optimal plans and thus pull the lever only towards the near-
est goal configuration. However, Bolander et al. (2018) have
shown that problems with infinite executions can still occur
if the agents’ knowledge about the world differs. E.g., we
could have the situation in which both the leftmost and the
rightmost configuration can be, but are not necessarily, goal
configurations. Imagine Anne only knows about whether or
not the leftmost configuration is a goal configuration and Bill
only knows about whether or not the rightmost configuration
is one. Using our solution concept, both have to assume the
worst case of their configuration being the only goal config-
uration and we still end up with infinite executions.

Instead of trying to provide success guarantees by only
restricting the types of policies which the agents are allowed
to take, in the present paper, we try to tackle the problem
of infinite executions on the planning task level. The reason
why requiring policies to be optimal does not always pre-
vent infinite executions is that optimality is judged from the
subjective perspective of each agent. Thus an agent may act
because from his perspective the action is part of an optimal

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

351

plan, while from the perspective of the agent who acted be-
fore it is not, and another agent was expected to act instead.
To prevent this from happening, we exclude all agents ex-
cept for one from performing actions. The acting agent can
then specify the agent who is allowed to act next. To model
this, we introduce a token that can be passed around by the
agents. Only the agent with the token is allowed to perform
an action. We show that this approach does not only solve
the lever problem from the example but prevents infinite ex-
ecution in general, while preserving plan existence, given
some formal criteria are met.

The remainder of this paper is structured as follows: First,
we are going to give a brief overview of related work, and
highlight how this paper builds on it. Next, we will intro-
duce the formal framework, dynamic epistemic logic (DEL).
In the main part of the paper, we demonstrate how to rewrite
a given planning task to include tokens, show that this elim-
inates infinite executions, and discuss under which condi-
tions plan existence can be preserved. Finally, we conclude
and discuss future work.

2 Related Work
In this paper, we attempt to provide success guarantees of
interleaved plan executions, just like Bolander et al. (2018)
did. Unlike them, we do not study how agent types impact
the success of implicitly coordinated plans, but rather im-
pose restrictions on allowed behavior by modifying the rules
of the planning task. Imposing the rule that only an agent
that possesses the token may act overcomes a limitation of
the agent-types approach: Without tokens, even optimally
eager agents are only guaranteed to prevent infinite execu-
tions if there is uniform observability.

In recent work orthogonal to the tokenization approach we
present here, Nebel et al. (2019) investigated how implicitly
coordinated plans without communications can succeed in
the special case of multi-agent path finding with destination
uncertainty, in which agents have to move to different des-
tinations in a collision free manner without communicating,
while the agents’ individual destinations are not common
knowledge among them. It was shown that, in such sce-
narios, eagerness and the capability to perform conservative
re-planning, are sufficient to ensure that plans succeed.

Besides planning with the intent to allow agents to self-
coordinate, epistemic planning has been mostly applied to
finding centralized plans in the presence of knowledge pre-
conditions and goals (Kominis and Geffner 2015; Muise et
al. 2015; Huang et al. 2017; Le et al. 2018). In more recent
work, Maubert, Pinchinat, and Schwarzentruber (2019) have
looked at modeling and synthesizing strategies for reachabil-
ity games in DEL, which is a setting which is more similar
to ours. While in their formalism, agents also act sequen-
tially, there is no interleaving concurrency and it is assumed
that it is always commonly known which agent’s turn it is.

Tokens have also made an appearance in distributed
systems, for example in the work of Loucks and Sha-
heen (1997). Components of a distributed system are located
apart from each other, but still have to communicate and co-
ordinate their actions to achieve a common goal. Makki et
al. (1992) used a token queue and semaphore for restricting

the use of a mutual resource that can only have a small num-
ber of users at a time. In contrast to the approach taken in the
present paper, their tokens are used to restrict the access to a
limited resource. Their agents do not plan with other agents,
and handing the token to the next player is usually done by
a waiting queue. In our approach, the idea is that the agent
who has the token gets to decide which agent will have the
token next. This is not desired in distributed systems be-
cause they want all agents to have the same rights of access
to a resource with no agent being strategically excluded.

Adding tokens can be seen as implementing a simple and
practical social law (specifically the law that only allows
an agent to act if it possess the token), a concept that has
gained increasing interest in multi-agent planning lately. So-
cial laws such as the ones from Karpas, Shleyfman, and Ten-
nenholtz (2017) and Nir and Karpas (2019) have also tried
to minimize the problems that arise from multiple agents by
trying to force the agents to work together and minimize the
amount of “damage” agents can do if they want to prevent
other agents from reaching their goal. Unlike their social
laws, which have to be designed by a rational person, and
specially made to fit one specific planning task, our approach
can be applied in a generalized way to given planning tasks.

3 Epistemic Planning
In the following, we will recapitulate the syntax and seman-
tics of Dynamic Epistemic Logic (DEL) (van Ditmarsch,
van der Hoek, and Kooi 2007), which we will use as the
formal framework of this paper. We will use the conven-
tions of Bolander et al. (2018), and also use their definitions
of planning tasks, policies, agent types and executions.

Let A be a finite set of agents and P be a finite set of
atomic propositions. The epistemic language LKC is then
defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | Cϕ

with p ∈ P and i ∈ A. Formula Kiϕ reads as “agent i
knows ϕ” and Cϕ reads as “it is common knowledge that
ϕ”. Furthermore, the operators >,⊥,←,→,↔ are defined
as abbreviations, analogously to their definition in proposi-
tional logic. We will refrain from specifying P and A ex-
plicitly, if their values are clear from the context.
Example 1. Recall the lever example from the introduction.
If we ignore the position of the lever, we can model the sit-
uation using A = {anne, bill}, and P = {l, r}, where l
denotes whether there is a goal position to the left and r
denotes whether there is a goal position to the right. The
formula ¬Kanner ∧ ¬Kanne¬r expresses that Anne does not
know whether or not there is a goal to the right. The for-
mula Kbill(¬Kanner ∧ ¬Kanne¬r) expresses that Bill does
know that Anne does not know.

Epistemic formulas are evaluated in epistemic models
M = 〈W, (∼i)i∈A, V 〉, where W is a non-empty finite set
of worlds (called the domain of M), ∼i⊆ W × W is an
equivalence relation called the indistinguishability relation
for each agent i ∈ A, and V : P → P(W) is the valuation
function, assigning to each proposition p ∈ P a set of worlds
V (p) in which the proposition is true.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

352

We depict epistemic models as graphs where the nodes
correspond to worlds and the edges correspond to indistin-
guishability between the worlds. Nodes are labeled with the
world name and all propositions which are true in that world.
Edges are labeled with the agents for which the worlds are
indistinguishable. For better readability, we usually omit re-
flexive edges and edges that are implied by transitivity.
Example 2. Assuming that it is common knowledge that at
least one of the two positions must be a goal position, we
can model the situation from our running example as epis-
temic modelM0 with three worlds: one world w1 in which
just the left position is a goal, one world w3 in which just
the right position is a goal and one world w2 in which both
positions are a goal. The epistemic model, including the in-
distinguishabilities for the agents is depicted below:

M0 =

w1 : l w2 : l, r w3 : r

anne bill

For Wd ⊆ W , the pair (M,Wd) is called an epistemic
state (or simply a state) and the worlds of Wd are called
designated worlds. A state is called global if Wd = {w}
for some world w (called the actual world). We then often
write (M, w) instead of (M, {w}). We use Sgl(P,A) to
denote the set of global states (or simply Sgl if P and A
are clear from context). For any state s = (M,Wd) we let
Globals(s) = {(M, w) | w ∈ Wd}. A state (M,Wd) is
called a local state for agent i if Wd is closed under ∼i (that
is, if w ∈Wd and w ∼i v, then v ∈Wd).
Given a state s = (M,Wd) the associated local state of
agent i, denoted si, is (M, {v|v ∼i w and w ∈ Wd}). Go-
ing from s to si amounts to a perspective shift to the local
perspective of agent i.
Example 3. Let s0 = (M0, w2) be the global state for
the lever example. Then Anne sees the local state sanne

0 =
(M0, {w1, w2}), meaning she cannot distinguish whether
(M0, w1) or (M0, w2) from Globals(sanne

0) is the true
global state. Bill sees sbill

0 = (M0, {w2, w3}).
Let (M,Wd) be a state withM = 〈W, (∼i)i∈A, V 〉. For

i ∈ A, p ∈ P and ϕ,ψ ∈ LKC, truth is defined as follows:

(M,Wd) |= ϕ iff (M, w) |= ϕ for all w ∈Wd

(M, w) |= p iff w ∈ V (p)

(M, w) |= ¬ϕ iff (M, w) 6|= ϕ

(M, w) |= ϕ ∧ ψ iff (M, w) |= ϕ and (M, w) |= ψ

(M, w) |= Kiϕ iff (M, v) |= ϕ for all v ∼i w
(M, w) |= Cϕ iff (M, v) |= ϕ for all v ∼∗ w

where ∼∗ is the transitive closure of
⋃
i∈A ∼i.

Example 4. We can now verify for our running exam-
ple, that it indeed holds that s0 |= ¬Kanner ∧ ¬Kanne¬r.
Note that checking a formula Kiϕ in a state s amounts
to the same as checking the formula ϕ in si. In our ex-
ample, s0 6|= Kanner because (M0, {w1, w2}) 6|= r, and
s0 6|= Kanne¬r because (M0, {w1, w2}) 6|= ¬r.

Note that syntactically different states can be epistemi-
cally equivalent, i.e., satisfy the exact same set of epistemic

formulas. In the following, we assume that such states are
identified. In practice, one can do that by checking for bisim-
ilarity (Blackburn, de Rijke, and Venema 2001).

3.1 Epistemic Actions and the Product Update
We also need a way do define actions, which can change the
facts of the world as well as the knowledge of the agents.
The way this is done in the action model logic of DEL is
using so-called event models.

An event model is a 4-tuple E = 〈E, (∼i)i∈A, pre, eff〉
where E is a non-empty finite set of events (called the do-
main of E), ∼A⊆ E × E is an equivalence relation called
the indistinguishability relation for each agent i ∈ A, and
the functions pre : E → LKC and eff : E → LKC assign
preconditions and effects to each event. While for each event
e ∈ E, the precondition pre(e) can be an arbitrary formula
from LKC, the effect eff(e) is a conjunction of literals, i.e, of
atomic propositions and their negations, including > and ⊥.

Each event of an action represents a different possible out-
come. By using multiple events e, e′ ∈ E which are indis-
tinguishable (e ∼i e′), for some agent i ∈ A, it is possible
to model actions that are only partially observable.

We depict event models similarly to epistemic models as
graphs, where the nodes correspond to events and the edges
correspond to the indistinguishability between events. We
label each node for an event e ∈ E with e : 〈pre(e), eff(e)〉.
As before, we usually omit reflexive edges and edges that
are implied by transitivity for better readability.

For Ed ⊆ E, the pair (E , Ed) is called an epistemic ac-
tion, or simply action. We call (E , Ed) a local action for
agent i when Ed is closed under ∼i.
Example 5. Consider the following event model which we
will use to model a sensing action for Anne. It contains one
event for each possible sensing outcome. Event e1 occurs if
r is true and event e2 occurs if r is false. Since the action
should not change any facts, both events have the effect >.
There is no indistinguishability between e1 and e2 for Anne.
This way, after the action, she will know whether e1 or e2
has occurred and thus whether r is true or false. To make
the action as general as possible we leave the events indis-
tinguishable to Bill: If he does not know whether or not r is
true, he should not learn it as result of Anne’s sensing action.

E1 =

e1 : 〈r,>〉 e2 : 〈¬r,>〉
bill

Anne’s sensing action is then (E1, {e1, e2}). We need to
designate both worlds due to not knowing the outcome of a
sensing action in advance. The action (E1, {e1}) could also
make sense, e.g., as an action for a third agent informing
Anne that r is true, without letting Bill know about it.

The semantics of action application is given by the prod-
uct update. Let a state s = (M,Wd) and an action
a = (E , Ed) be given with M = 〈W, (∼i)i∈A, V 〉 and
E = 〈E, (∼i)i∈A, pre, eff〉. Then the product update of s
with a is defined as s⊗a = (〈W ′, (∼′i)i∈A, V ′〉 ,W ′d) where
• each world is paired up with all applicable events, i.e.,
W ′ = {(w, e) ∈W × E | M, w |= pre(e)};

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

353

• new worlds are indistinguishable if the old worlds were
indistinguishable and the events are indistinguishable,
i.e., (w, e) ∼′i (w′, e′) iff w ∼i w′ and e ∼i e′;

• propositions become true if they occur positively in the
effect of the event, or if they don’t occur negatively and
have already been true before, i.e., (w, e) ∈ V ′(p) iff
eff(e) |= p or (M, w |= p and eff(e) 6|= ¬p);

• worlds are designated if both predecessor world and event
are designated, i.e., (w, e) ∈W ′d iff w ∈Wd and e ∈ Ed.

We say that an action a = (E , Ed) is applicable in a state
s = (M,Wd) if for all w ∈ Wd there is an applicable event
e ∈ Ed, meaningM, w |= pre(e).

Example 6. In our running example, the action a1 is appli-
cable in s0, and after the action application, we obtain the
state s1 = (M1, {(w2, e1)}) whereM1 is depicted below:

M1 =

(w1, e2) : l (w2, e1) : l, r (w3, e1) : r

bill

We can see that in s1, Anne now knows that r. Also, while
Bill has not learned anything new about l, he knows now that
Anne knows about r. The sensing action of Anne is public
in the sense that other agents will know that the sensing has
taken place.

3.2 Planning Tasks, Policies and Executions
We now have everything that is needed to define multi-agent
epistemic planning tasks in DEL. For a fixed set of agentsA,
a planning task Π = 〈s0, A, ω, γ〉 consists of a global state
s0 called the initial state; a finite set of actions A; an owner
function ω : A→ A; assigning each action to its owner and
a goal formula γ ∈ LKC.

Example 7. For the lever problem, the planning task is a
tuple 〈s0, A, ω, γ〉 such that s0 is defined as before plus ad-
ditional propositions that indicate the position of the lever
(e.g., pl ∈ P to indicate that the lever is at the leftmost
position, pr ∈ P to indicate that the lever is at the right-
most position, and other propositions for the positions in
between). For each non-leftmost position of the lever, we
could then have an action a ∈ A for pulling the lever to the
left. These actions are owned by Anne, i.e., ω(a) = anne.
And for all non-rightmost positions we could have actions
a ∈ A for Bill pulling the lever to the right, i.e., with
ω(a) = bill. Since these pulling actions can be fully ob-
served by all agents, they could be defined using only one
single event with an appropriate precondition and effect. Fi-
nally, the goal formula would be γ = (l ∧ pl) ∨ (r ∧ pr).

A policy π for Π = 〈s0, A, ω, γ〉 is a partial mapping π :
Sgl ↪→ P(A) satisfying the conditions applicability (appl),
uniformity (unif), and single-agent determinism (det).

(appl) Actions are applicable in states they are assigned to:
for all s ∈ Sgl, a ∈ π(s) : a is applicable in s.

(unif) If in some state the policy prescribes an action to
an agent, it should prescribe the action also in states that
the agent cannot distinguish: for all s, t ∈ Sgl such that
sω(a) = tω(a), from a ∈ π(s) follows a ∈ π(t).

(det) For each state, the policy assigns at most one action
per agent. I.e., there are no s ∈ Sgl and a, a′ ∈ π(s) with
a 6= a′ and ω(a) = ω(a′).
Note that our definition of uniformity works because we

consider bisimilar states to be equal. For two epistemically
equivalent states s and s′, it thus holds that π(s) = π(s′).
The properties uniformity and applicability together imply
knowledge of preconditions, the property that in each state,
an agent who is supposed to perform a particular action must
also know that the action is applicable in that state.

Note also that because of the uniformity we must allow
policies to sometimes prescribe multiple actions of different
owners to the same state. Imagine that from some state s the
goal can be only reached via action a of agent i and from
some state s′ the goal can be only reached via action b of
agent j. If there is a state s′′ which is indistinguishable to
s for agent i and to s′ for agent j, then the policy should
assign both actions a and b to state s′′. To characterize the
different outcomes of agents acting according to a common
policy, we define the notion of policy executions:

An execution of a policy π from a global state s0 is a max-
imal (finite or infinite) sequence of alternating global states
and actions (s0, a1, s1, a2, s2, ...), such that for all m ≥ 0,

(1) am+1 ∈ π(sm), and
(2) sm+1 ∈ Globals(sm ⊗ am+1).

An execution is called successful for a planning task Π =
〈s0, A, ω, γ〉, if it is a finite execution (s0, a1, s1, ..., an, sn)
such that sn |= γ.
Example 8. In the lever example, a policy could be, starting
in the position with the lever being in the middle, Bill pulls
the lever to the right and then to the right again. This policy
satisfies all policy properties and its only execution is suc-
cessful since the goal formula is satisfied in the end. How-
ever, while from the perspective of Bill, this is a reasonable
policy, Anne cannot verify that the policy is successful be-
cause she does not know whether or not the right position is
a goal position.

We now want to restrict our focus to policies that are guar-
anteed to achieve the goal after a finite number of steps.
More formally, all of their executions must be successful. As
in nondeterministic planning, such policies are called strong
(Cimatti et al. 2003). For a planning task Π = 〈s0, A, ω, γ〉,
a policy π is called strong if s0 ∈ Dom(π)∪ {s ∈ Sgl | s |=
γ} and for each s ∈ Dom(π), any execution of π from s
is successful for Π. A planning task is called solvable if a
strong policy for Π exists. For i ∈ A , we call a policy
i-strong if it is strong and Globals(si0) ⊆ Dom(π) ∪ {s ∈
Sgl | s |= γ}.

When a policy is i-strong it means that the policy is strong
and defined on all the global states that agent i cannot distin-
guish between in the initial state. It follows directly from the
definition that any execution of an i-strong policy from any
of those initially indistinguishable states will be successful.
So if agent i comes up with an i-strong policy, then agent i
knows the policy to be successful.
Example 9. The policy from above, with Bill pulling the
lever to the right twice is bill-strong but not anne-strong.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

354

Sometimes the agents cannot coordinate their plans but
rather have to come up with them individually. Their poli-
cies can differ substantially, as agents often have different
knowledge about the current states, applicable actions and
action outcomes. To deal with agents having differing poli-
cies, we will define executions for policy profiles. A policy
profile for a planning task Π is a family of policies (πi)i∈A
where each πi is a policy for Π. We assume actions to be in-
stantaneous and executed asynchronously. This leads to the
following definition of executions:

An execution of a policy profile (πi)i∈A is a maximal (fi-
nite or infinite) sequence of alternating global states and ac-
tions (s0, a1, s1, ...), such that for all m ≥ 0,

(1) am+1 ∈ πi(sm) where i = ω(am+1), and

(2) sm+1 ∈ Globals(sm ⊗ am+1).

Note that there are two different sources of nondeterminism:
the nondeterminism resulting from the possibility of multi-
ple policies prescribing actions for their respective agents (in
condition 1) and the nondeterminism from nondeterministic
action outcomes (in condition 2).

If all agents have one strong policy in common which all
of them follow, then at execution time, the goal is guaranteed
to be eventually reached. If, however, each agent acts on
its individual strong policy, then the incompatibility of the
individual policies may prevent the agents from reaching the
goal, even though each individual policy is strong.

Bolander et al. (2018) have studied this in detail. They
looked at different types of planning agents, which they de-
fined as pairs (i, T), where i ∈ A is an agent name and T
is a mapping from planning tasks to policies such that T (Π)
must be an i-strong policy for Π, whenever such a policy ex-
ists. The question they investigated was whether we can im-
pose restrictions on a groups of agents (i, Ti)i∈A so that all
executions generated by this groups can be guaranteed to be
successful. To simplify things, Bolander et al. (2018) have
only looked at cases where all agents find maximal strong
policies in the initial states of the planning task. These poli-
cies must be defined on all states (1) which are reachable
from the initial state by arbitrary sequences of actions and
(2) from which a strong policy exists. If all agents act with
respect to such plans, re-planning is unnecessary and does
not have to be considered.

A positive result was obtained in the general case for
avoiding deadlocks (i.e., executions which end in a non-goal
state where agents are waiting for each other to act). This
was achieved by requiring planning agents to be eager and
prefer own actions over other agents’ actions in their plans
whenever possible.

Concerning infinite executions, they have shown that
there exists no type of planning agent that can prevent situa-
tions similar to the lever example. However, in cases where
all agents have uniform knowledge, both deadlocks and in-
finite executions can be avoided if all agents are optimally
eager, meaning if the planning agents only generate policies
which are subjectively optimal (which means that these poli-
cies must have minimal perspective-sensitive costs), and that
they prefer own actions over other agents’ actions whenever
possible without increasing the costs.

Let π be a strong policy for a planning task Π. The
perspective-sensitive cost (or simply cost) of π from a state
s ∈ Dom(π), denoted κπ(s) is defined as:

κπ(s) =

{
0 if there exists no a ∈ π(s)

1+maxa∈π(s),s′∈Globals(sω(a)⊗a) κπ(s′) else.

The positive results that we get for our token-based ap-
proach will be based on the assumption that the planning
agents act with respect to subjectively optimal policies.

4 Planning with Tokens
In the example from the introduction, the problem is that
both agents want to pull the lever to the different goal con-
figurations they know about, resulting in infinite executions.
This problem can be eliminated by introducing a token such
that only the agent that possesses the token is allowed to act.
The goal of this tokenization is that only one agent gets to
make a move at any time. Once the agent is done with their
own actions, they can pass on the token to the next agent.

There are different ways to implement such a token. First,
we have to add actions with which agents can pass the token
to the next agent. Furthermore, we have to define how the
first agent obtains the token. The way we decided to im-
plement this is via an action with which any agent can take
the token initially. Note that there are other possibilities.
For example, we could initially assign the token randomly
to one of the agents. The disadvantage with this approach
is that there are planning tasks where only some but not all
of the agents find a plan from their local perspectives. In
these cases, assigning the token randomly would lead to an
unsolvable task. We can also leave the burden of designating
the first agent to act to the modeler of the planning task. But
then again, to be sure to not make a solvable planning task
unsolvable, the modeler would have to already know which
of the agents can find a plan and which of the agents cannot.

4.1 Tokenization of Planning Tasks
We will now formally describe a function that tokenizes any
given planning task. The idea is that we introduce additional
predicates ti for all agents i ∈ A with the intuitive mean-
ing of “agent i possesses the token”. We can then use these
propositions in the preconditions of our tokenized actions.
We first define the tokenization of epistemic states.
Definition 1. Let s = (〈W, (∼i)i∈A, V 〉 ,Wd) be an
epistemic state with proposition set P . Then the tok-
enization of state s is a new epistemic state tok(s) =
(〈W, (∼i)i∈A, V ′〉 ,Wd), which has the proposition set P ∪
{ti | i ∈ A} and where V ′ = V ∪ {ti 7→ ∅ | i ∈ A}.

Furthermore, for any agent i ∈ A, we define the i-
tokenization tok i(s) of state s analogously, but with V ′ =
V ∪ {ti 7→W} ∪ {tj 7→ ∅ | j ∈ A, j 6= i}.

This means in tok(s) no agent has the token yet and in
tok i(s), the token is owned by agent i. Token ownership is
always common knowledge between the agents.

We can now define the tokenization of epistemic actions.
Definition 2. Let a = (〈E, (∼i)i∈A, pre, eff〉 , Ed) be
an epistemic action and i ∈ A be an agent. Then

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

355

the i-tokenization of action a is a new epistemic action
tok i(a) = (〈E, (∼i)i∈A, pre′, eff〉 , Ed) with new precon-
ditions pre′(e) = ti ∧ pre(e) for all e ∈ E.

Since tokenized actions use the token propositions, they
can only be applied to tokenized states and their successors.
We can finally define the tokenization of planning tasks.

Definition 3. Let Π = 〈s0, A, ω, γ〉 be a planning task. We
define the tokenization of task Π as tok(Π) = 〈s′0, A′, ω′, γ〉
as follows:

• s′0 = tok(s0) where tok(s0) is the tokenization of s0,

• A′ = {tokω(a)(a) | a ∈ A} ∪ {takeToki | i ∈ A} ∪
{giveTokij | i, j ∈ A, i 6= j}, where for all i 6= j ∈ A
– takeToki is an action consisting of a single event with

precondition
∧
k∈A ¬tk and effect ti,

– giveTokij is an action consisting of a single event with
precondition ti and effect ¬ti ∧ tj , and

• ω′(a′) =

ω(a) if a′ = tok(a) for some a ∈ A
i if a′ = takeToki for some i ∈ A
i if a′ = giveTokij for some i, j ∈ A.

Note that the tokenization of a planning task with propo-
sition set P will have the proposition set P ∪ {ti | i ∈ A}.
When talking about tokenized planning tasks, we will from
now on use Sgl

tok to denote the set of states that we get by
tokenizing all the states in Sgl, i.e., Sgl

tok = {tok(s) | s ∈
Sgl} ∪ {tok i(s) | s ∈ Sgl, i ∈ A}. Furthermore, we will
use the notation tok(A) = A′ for the set A′ of all tokenized
actions from the action set, as defined above.

While we assume unit action costs in Π, it is not immedi-
ately obvious which costs we should assign to giveTok ac-
tions. Assigning them unit costs as well may be the most
obvious option, but comes at the risk of introducing an un-
warranted bias towards few token passings at the expense
of overly costly subplans consisting of “proper” (non-token-
passing) actions. On the other hand, assigning them costs
of zero makes token passing free and preserves optimality.
Unfortunately, with zero-cost token passings, our main theo-
rem (Theorem 1) that states that introducing tokens prevents
infinite executions, becomes invalid, since then, there can
be maximal subjectively optimal i-strong policies that still
lead to infinite executions, more specifically, infinite rounds
of token passing. As a compromise between zero costs and
unit costs, we may also assign costs of a sufficiently small
ε > 0 to all giveTok actions. In the following, we will not
study the question of those action costs further, but rather
assume that all actions have unit costs.

4.2 No More Infinite Executions
Given this formalization, we can now show that we can pre-
vent the existence of infinite executions by transforming the
planning task into a tokenized planning task and requiring
the agents to use subjectively optimal policies.

Theorem 1. Let Π be a tokenized planning task and let
(πi)i∈A be a profile of maximal subjectively optimal i-strong
policies for Π. Then all executions of (πi)i∈A are finite.

Proof sketch. For the case where the initial state is already
a goal state and no agent takes the token, we do not have to
prove anything. For the other case, let us assume that agent
j has the token in some given state s with costs κπj

(s) = c.
We can distinguish the following cases:

• If c = 0, then j will not perform any more action and the
execution is finished.

• If c > 0 and πj(s) 6∈ {giveTokjk | k ∈ A} then j will still
have the token in each of the subjective successor states
s′ ∈ Globals(sj ⊗ πj(s)) of s. By the definition of sub-
jective costs, we have κπj

(s′) ≤ c− 1.

• If c > 0 and πj(s) = giveTokjk for some agent k ∈ A
then agent k will have the token in each of the subjective
successor states s′ ∈ Globals(sj ⊗ πj(s)) of s. By the
definition of subjective costs we have κπj

(s′) ≤ c − 1.
Since k plans optimally, κπj

(s′) must be an overestimate
of κπk

(s′) and we thus have κπk
(s′) ≤ κπj

(s′) ≤ c− 1.

Since the value of c decreases by at least 1 after each action
and can never fall below 0, any execution must eventually
stop.

Example 10. It is easy to see how the tokenization works
with our lever example: Initially, both agents want to take
the token. After one of the agents has obtained the token
(which is decided nondeterministically), the agent moves the
lever all the way to its goal position. The token remains with
that agent and the execution is finished.

4.3 Policy Existence for Tokenized Tasks
Whereas tokenization makes sure that infinite executions
disappear, unfortunately, it does not preserve all i-strong
policies from the original task. An issue arises in scenarios
such as the following.
Example 11. Assume that agent 1 initially holds an object
and knows that either agent 2 or agent 3 desires that object,
but does not know who. Without tokens, agent 1 can place
the object on the table and expect the agent desiring the ob-
ject to pick it up. With tokens, agent 1 can still place the
object on the table, but then has to pass the token to the cor-
rect agent. Without knowing who that is, the policy cannot
be tokenized in a straight forward way. Assuming that one
of the agents does not even know that the other agent desires
the object, giving the token to this agent would even lead to
a dead-end state. In this case, while there exists a 1-strong
policy for the original task, there is no 1-strong policy for
the tokenized version of the task.

The underlying problem can be characterized by a prop-
erty of agent 1’s policy π1: The state s in which agent 1
puts the object on the table has a global successor state s′
in which one of the other agents must act, but which is in-
distinguishable for agent 1 to another state s′′ in which the
third agent must act. Formally, we have π1(s′) = {pickUp}
and π1(s′′) = {pickUp′} with ω(pickUp) 6= ω(pickUp′).

Intuitively, to avoid this problem, we need to require that
after each action of an agent i leading to some non-terminal
state s′, the agent i can identify a unique agent next(i, s′)
which can act next. In the tokenized version of a policy, the

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

356

first agent would pass the token to exactly this agent or, in
the case where next(i, s′) = i, keep it.

Definition 4. We say a policy π : Sgl ↪→ P(A) satisfies
the knows-the-next-agent property (KNA) if there exists a
function next : A× Sgl ↪→ A, which we call the next agent
function, with the following property: For each state s ∈
Sgl, action a ∈ π(s) owned by agent i = ω(a), non-terminal
successor state s′ ∈ Globals(s ⊗ a), i.e. for which π(s′)
is defined and nonempty, and all states s′′ ∈ Globals(s′i)
which are indistinguishable to s′ for i, there is an action a′ ∈
π(s′′) such that ω(a′) = next(i, s′).

Note that for some policies there is more than one next
agent function. Given a finite policy, it is easy to either con-
struct a next agent function or to prove that no such function
exists. This can be done by successively looking at each
triple (s, a, s′) ∈ Sgl × A × Sgl such that a ∈ π(s) and
s′ ∈ Globals(s ⊗ a). If there is an agent i ∈ A who owns
for all states s′′ ∈ Globals(s′ω(a)) an action a′ ∈ π(s′′), we
can assign it to next(ω(a), s′). If there is no such agent, we
know that there is no next action function and that the policy
thus does not satisfy the KNA property. However, if there is
always such an agent and thus the KNA property is satisfied,
this means that the acting agents will be able to identify the
agents to which the token can be passed next from their own
perspectives and without the need of external coordination.

4.4 Tokenization of Policies
We can now tokenize policies which satisfy the KNA prop-
erty in the obvious way: before each regular action, we add
a token-passing action to the owner of the next action if nec-
essary.

Definition 5. Let π : Sgl ↪→ P(A) be a policy that satisfies
the KNA property and let next be a next agent function for
π. Then we define the tokenization of the policy π with next

as toknext (π) : Sgl
tok ↪→ P(tok(A)), where

(1) For all states s′ = tok(s) ∈ Sgl
tok, i.e., in which no agent

has the token, we have toknext (π)(s′) = {takeTokω(a) |
a ∈ π(s)}.

(2) For all states s′ = tok i(s), i.e., such that some agent i has
the token, in the case where next(i, s′) = j 6= i, we have
toknext (π)(s′) = {giveTokij}.

(3) For all states s′ = tok i(s), i.e., such that some agent i
has the token, in the case where next(i, s′) = i, we have
toknext (π)(s′) = {tok(a) | a ∈ π(s), ω(a) = i}.
We are now ready to prove that, under the assumption

of the KNA property, tokenization does indeed preserve i-
strong policies.

Theorem 2. Let π be a strong policy for a planning task Π
which satisfies the KNA property and let next be a next agent
function for π. Then the tokenized policy π′ = toknext (π)
is also a strong policy for the tokenized planning task Π′ =
tok(Π).

Proof sketch. We first have to show that the policy proper-
ties are satisfied for π′. For the token taking and passing

actions from the first two cases of Definition 5, the applica-
bility condition is trivially satisfied: The token can be taken
because it is still on the table, and it can be passed along be-
cause it is possessed by the correct agent. For the third case,
the applicability condition is also satisfied, since all actions
that are assigned to the state belong to the agent that pos-
sesses the token. Uniformity is slightly more complicated:
In the first case, uniformity follows directly from the unifor-
mity of the original policy. In the second case, uniformity
follows from our definition of next agent functions which
guarantees that next(i, s′) = next(i, s′′) for all states s′′
which are indistinguishable to s′ for agent i. Finally, in the
third case, uniformity follows for the same reason, together
with the fact that all actions that were assigned to each equiv-
alence class of indistinguishable states in the original policy
are now again assigned to the corresponding states in the
tokenized policy.

We can now prove that the policy is strong. We first have
to show that the initial state is again either already a goal
state or that it is contained in the domain of the policy. This
follows directly from strength of the original policy: Either
the initial state of Π is a goal state, in which case the initial
state of Π′ will be a goal state for Π′ as well (since the tokens
cannot be part of the goal formula). Or otherwise, if the
initial state of Π is contained in π, its tokenized version,
which is the initial state for Π′ will also be contained in π′.

We then have to show that each execution of π′ is suc-
cessful. We first have to note that for each execution of π′
in Π′, there is a corresponding execution of π ∈ Π using
the untokenized actions and omitting the token taking and
passing actions. Note that we cannot have any dead ends in
π′, because there are no dead ends in π and because our to-
kenization ensures that whenever there are transitions from
one state to another in π, at least one of these transitions
must have a corresponding transition in π′ (which might in-
clude a token passing action before the actual action). Since
any execution of π ends in a goal state, also any execution
of π′ must end in a goal state.

5 Tokenization and Re-Planning
Note that in our analysis, so far we have always assumed
that all agents act with respect to maximal strong policies
which they form in the initial state of the planning task. In
practice, this is a big limitation.

First of all, finding maximally strong policies can be very
expensive since the state space can be huge and maximally
strong policies must be defined for all reachable states from
which a strong policy exists. Even in decidable fragments
of DEL planning it stands to reason that finding maximally
strong plans can be much more difficult than finding opti-
mal plans. Also, we cannot deal with situations yet where
only one of the agents has an i-strong policy from the start,
and where the other agents will find their plans and join tak-
ing part in the execution only after a few actions of agent i,
which is one of the main advantages of i-strong policies.

An alternative to using maximal strong policies is to em-
ploy a re-planning regime. This approach has been taken by
Nebel et al. (2019) in the specialized setting of multi-agent
path finding with destination uncertainty, which has been

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

357

?

? ? ?

?

kick-imprecise

kick-precise

Figure 2: Two agents, a ball and a roof.

originally formalized as DEL planning task (Bolander et al.
2018). Nebel et al. showed that even in this restricted class
of implicit-coordination problems, and using a re-planning
regime, optimally eager agents can still produce infinite ex-
ecutions. In the following, we formalize re-planning execu-
tions for the general case and analyze whether tokenization
helps to prevent infinite executions.
Definition 6. A re-planning execution of a group of
planning agents (i, Ti)i∈A is a maximal (finite or in-
finite) sequence of alternating global states and actions
(s0, a1, s1, . . .), such that for all m ≥ 0,

(1) am+1 ∈ Ti(Π|sm)(sm) where i = ω(am+1), and
(2) sm+1 ∈ Globals(sm ⊗ am+1),

where Π|sm is the same planning task as Π, but where the
initial state has been replaced by sm. We call such an execu-
tion successful if it is a finite execution (s0, a1, s1, . . . , sn)
such that sn |= γ.

Unfortunately, Theorem 1 can not be transferred directly
to re-planning agents. Consider the following counter-
example, as depicted in Figure 2.
Example 12. There are two agents standing at opposing
sides of a building. Since the building is between them, they
cannot see each other. The goal of the planning task is that a
football, which is initially on the side of the left agent, ends
up on top of the building. The agents can observe the ball
only if it is on their respective side of the building. In our
depiction, an agent that has a question mark on the top of its
head is unsure whether the ball is already on the roof or with
the other agent. Both agents have an action to kick the ball.
However, the left agent cannot aim as accurately as the right
agent. If he kicks the ball, it might either land on the roof or
on the side of the other agent. The right agent has sufficient
aim, so after she kicks the ball, she will be certain that the
ball is on the rooftop. The left agent will not know when this
happens, since he cannot see the shot.

Figure 2 shows a policy that is i-strong for both agents.
Interestingly, it contains a goal state in which both agents
do not know that the goal is satisfied. Since the figure is
also a depiction of the entire state space of the planning task
(and since in the goal states, no agent can act), it is clear that

re-planning agents who act with respect to i-strong policies
will always generate successful executions.

However, in the tokenization of the planning task, the fact
that the agents now do re-planning leads to an infinite ex-
ecution in the case where the imprecise kicking action of
the left agent already succeeds landing the ball on the roof.
This is because the agent must pass the token to the agent
on the right to cover for the contingency where the ball went
over the roof. The agent on the right must then re-plan and
cover for the contingency where the ball is still with the left
agent and pass the token directly back, which leads to the
same state as before. Thus the agents will effectively pass
the token back and forth.

The reason for the infinite execution is that in the end,
none of the agents knows that the goal has been reached, and
both of the agents consider it possible that the other agent
still has some work to do. If we allowed the agents to do
some kind of forward induction, i.e., reasoning about the
motive behind the other agent’s action, they could maybe
infer from the fact that the token has been passed to them that
the ball must already be on the roof. However, it is unclear
how a reasonable solution concept for implicit coordination
with forward induction would look like and this is a major
topic for future research.

A more direct way to prevent such situations and which
works with our existing notion of strong policies is to ensure
that each policy is stable, in the sense that in terminal states,
all agents who have applicable actions know that the goal
has already been reached.
Definition 7. We say that a policy π : S ↪→ P(A) is stable
for a goal γ, if for all states s ∈ S, actions a ∈ π(s) and
successor states s′ ∈ Globals(s ⊗ a) for which there is no
action a′ ∈ π(s′) (i.e., terminal states), we have s′ |= Kiγ
for all agents i who have actions that are applicable in s′i.

Although this approach seems to be very restrictive in
general, it makes a lot of sense for tokenized planning tasks
because in any given state of an execution, with the excep-
tion of the initial state, there is only one agent that has ap-
plicable actions anyway. We can now verify that there are
no infinite executions for tokenized planning tasks, given all
agents are optimally eager and produce only stable plans.
Theorem 3. Given a tokenized planning task tok(Π) with
goal γ and a group (i, Ti)i∈A of optimally eager planning
agents, such that for arbitrary states s ∈ Sgl

tok, the agents
produce only policies Ti(tok(Π)|s) which are stable for γ.
Then all re-planning executions of (i, Ti)i∈A are finite.

Proof sketch. The proof works analogously to the proof of
Theorem 1, with the difference that agents can have a differ-
ent policy for each state. The first two cases are identical: If
the agent who has the token finds a policy with cost 0, the
execution is finished. And if the agent who has the token has
an action that is not a token passing action, then in the suc-
cessor state he will have the token again and be guaranteed
to find a policy where the cost decreases by at least 1.

The difference is in the third case where the token is
passed from an agent j to another agent k. Here, the proof
of Theorem 1 relies on the assumption that if agent k wants

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

358

to apply an action after obtaining the token, then this ac-
tion must also be part of a policy that is subjectively optimal
from the initial state. For example, in the rooftop example
with tokens, there is no policy starting from the initial state
such that if the ball lands on the roof immediately and the
token is passed to the right agent, this agent will try to give
the token back (because this would create a cycle in the pol-
icy). Instead, the execution would stop with the agent not
knowing that the goal has been reached. With re-planning
and without the stability property, the right agent would find
a new plan in which the token is given back and then, if the
goal has already been reached, the left agent does nothing,
or otherwise the policy proceeds as in Figure 2. However, in
the execution, after the token has been given back, the left
agent would also re-plan and pass the token straight back.

We will now look at what happens with policies satisfying
our stability property. As before, we assume that the token is
passed from agent j to k, leading from a state s to a state s′
in which only agent k has applicable actions. We distinguish
between the following cases:

• If πj = Tj(tok(Π)|s) assigns some action to state s′, this
action must be owned by agent k and it is thus clear that
πj must also be a k-strong policy for s′. Since agent k
plans optimally, π′k = Tk(tok(Π)|s′) will be a policy with
κπ′

k
(s′) ≤ κπj

(s′) ≤ κπj
(s)− 1.

• If πj assigns no action a′ ∈ πj(s
′) to s′, then because

of the stability condition (since at least the token passing
actions are applicable), agent k must know that the goal
is satisfied in s′ and thus π′k = Tk(tok(Π)|s′) will be a
policy with κπ′

k
(s′) = 0.

Since, as before, the cost of the policy belonging to the agent
who acts in each state of the execution decreases in each step
by at least 1 and can never fall below 0, any execution must
eventually stop.

Instead of defining a new agent type that also requires
generated policies to be stable, we can modify the planning
tasks to enforce that each strong policy for the planning task
must be stable. This is especially easy if the planning task is
already tokenized: If the propositions ti denote that an agent
i has the token, we can simply change the goal formula from
γ to γ′ = γ ∧

∧
i∈A(ti → Kiγ). Thus, in each new goal

state, an agent who has the token must know that γ is sat-
isfied and, by introspection, also that γ′ itself is satisfied.
Therefore, any strong policy trivially satisfies the stability
condition, and thus agents never have reason to pass on the
token to another agent in goal states.
Example 13. Imagine that in our football example, the left
agent has an additional action using which also he can pass
the ball to the right agent with certainty, e.g., by throwing the
ball instead of kicking it. Then, if we encode our stability
condition into the goal formula, and given both agents are
optimally eager, a successful execution is guaranteed. The
left agent will throw the ball to the right agent who will then
kick it onto the rooftop. Without the stability condition, the
left agent might just as well decide to kick the ball, which
might result in both agents passing the tokens back and forth,
as seen previously.

6 Conclusion
We have looked at how the tokenization of epistemic plan-
ning tasks can be used to mitigate the problem of infinite
executions. We have shown that in the case of agents acting
with respect to maximally strong policies, tokenization suc-
cessfully prevents infinite executions. However, there are
planning tasks for which, despite the existence of a strong
policy, there is no strong policy for the tokenized task. The
strong policies of the original task which can be tokenized
are characterized by the knows-the-next-agent property.

So far, we have considered only a tokenization in which
the token is passed directly from one agent to another agent.
This is a big restriction since we can easily construct plan-
ning tasks where the first agent to act knows that one of the
other agents can finish the plan, but not which of the agents.
Even if for this task infinite executions are not possible, the
fact that no policy satisfies the KNA property implies that
there are no strong policies for the tokenization. A possible
remedy could be to allow the agents to pass the token to mul-
tiple agents at once, one of which then has to decide to take
the next action and continue passing the token. However,
without additional constraints (e.g., on the subsets of agents
that the token can be passed to), using such a tokenization
we can easily end up with infinite executions again. This is
because after each action the token can be passed back to
all of the agents, and thus each strong policy of the original
task also corresponds to a strong policy for the tokenization.
Thus, if we can get infinite executions for the original task,
we can also get infinite executions for this kind of tokeniza-
tion. Note that the solution policies for most of the tasks con-
sidered in literature, including multi-agent path finding with
destination uncertainty, satisfy the KNA property meaning
that the simple tokenization from this paper is sufficient to
solve these tasks while avoiding infinite executions.

Importantly, if there is a policy for the original planning
task that can be tokenized, it can be found by directly by
planning for the tokenized task, which is not a more com-
plex problem than planning for the original task. This is
because the tokenization increases the size of the input task
only linearly. Note that while in the general case the strong
policy existence problem is undecidable, there exist tractable
fragments (Engesser and Miller 2020).

We have furthermore shown that for re-planning agents,
tokenization alone is not sufficient to prevent infinite execu-
tions. However, we can employ an additional stability con-
dition that can be encoded into the goal formula.

For future work, we plan to investigate tokenized plan-
ning tasks in the context of forward induction. This would
mean allowing the agents to infer knowledge by reasoning
about the motive of other agents’ actions. For example, an
agent could pass the token to another agent to signal that
that agent has an action available which progresses towards
the goal, even if the agent does not know that yet. How-
ever, forward induction has not been formalized in the con-
text of epistemic planning for implicit coordination so far.
Supporting such reasoning would arguably require a solu-
tion concept that goes beyond what is possible with strong
policies.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

359

References
Blackburn, P.; de Rijke, M.; and Venema, Y. 2001. Modal
Logic, volume 53 of Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press.
Bolander, T.; Engesser, T.; Mattmüller, R.; and Nebel, B.
2018. Better eager than lazy? How agent types impact the
successfulness of implicit coordination. In Proceedings of
KR 2018, 445–453.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2003. Weak, strong, and strong cyclic planning via symbolic
model checking. Artificial Intelligence 147(1–2):35–84.
Engesser, T., and Miller, T. 2020. Implicit coordination
using FOND planning. In Proceedings of AAAI 2020, 7151–
7159.
Engesser, T.; Bolander, T.; Mattmüller, R.; and Nebel, B.
2017. Cooperative epistemic multi-agent planning for im-
plicit coordination. In Proceedings of M4M 2017, 75–90.
Huang, X.; Fang, B.; Wan, H.; and Liu, Y. 2017. A general
multi-agent epistemic planner based on higher-order belief
change. In Proceedings of IJCAI 2017, 1093–1101.
Karpas, E.; Shleyfman, A.; and Tennenholtz, M. 2017. Au-
tomated verification of social law robustness in STRIPS. In
Proceedings of ICAPS 2017, 163–171.
Kominis, F., and Geffner, H. 2015. Beliefs in multiagent
planning: From one agent to many. In Proceedings of ICAPS
2015, 147–155.
Le, T.; Fabiano, F.; Son, T. C.; and Pontelli, E. 2018. EFP
and PG-EFP: epistemic forward search planners in multi-
agent domains. In Proceedings of ICAPS 2018, 161–170.
Loucks, L. K., and Shaheen, A. A. 1997. System and
method for multi-level token management for distributed file
systems. US Patent 5,634,122.
Makki, K.; Banta, P.; Been, K.; Pissinou, N.; and Park, E. K.
1992. A token based distributed K mutual exclusion algo-
rithm. In Proceedings of SPDP 1992, 408–411.
Maubert, B.; Pinchinat, S.; and Schwarzentruber, F. 2019.
Reachability games in dynamic epistemic logic. In Proceed-
ings of IJCAI 2019, 499–505.
Muise, C.; Belle, V.; Felli, P.; McIlraith, S.; Miller, T.;
Pearce, A. R.; and Sonenberg, L. 2015. Planning over multi-
agent epistemic states: A classical planning approach. In
Proceedings of AAAI 2015, 3327–3334.
Nebel, B.; Bolander, T.; Engesser, T.; and Mattmüller, R.
2019. Implicitly coordinated multi-agent path finding under
destination uncertainty: Success guarantees and computa-
tional complexity. Journal of Artificial Intelligence Research
64:497–527.
Nir, R., and Karpas, E. 2019. Automated verification of
social laws for continuous time multi-robot systems. In Pro-
ceedings of AAAI 2019, 7683–7690.
van Ditmarsch, H.; van der Hoek, W.; and Kooi, B. 2007.
Dynamic Epistemic Logic, volume 337 of Synthese Library.
Springer.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

360

	Introduction
	Related Work
	Epistemic Planning
	Epistemic Actions and the Product Update
	Planning Tasks, Policies and Executions

	Planning with Tokens
	Tokenization of Planning Tasks
	No More Infinite Executions
	Policy Existence for Tokenized Tasks
	Tokenization of Policies

	Tokenization and Re-Planning
	Conclusion

