
Partial Disclosure of Private Dependencies in Privacy Preserving Planning

Rotem Lev Lehman1 and Guy Shani1 and Roni Stern1,2

1Software and Information Systems Engineering, Ben Gurion University of the Negev, Be’er Sheva, Israel
2Palo Alto Research Center, Palo Alto, CA, USA

levlerot@post.bgu.ac.il, shanigu@bgu.ac.il, sternron@post.bgu.ac.il

Abstract

In collaborative privacy preserving planning (CPPP), agents
can plan together by revealing private dependencies between
their public actions to other agents. Perhaps one of the best
methods for computing plans under privacy constraints uses
a projection of the complete problem that captures these pri-
vate dependencies. In this paper we investigate the partial
disclosure of such private dependencies. We create a pro-
jection where agents publish only a part of their dependen-
cies, and attempt to create a complete plan using these de-
pendencies only. We investigate different strategies for de-
ciding which dependencies to publish, and how they affect
both the coverage and the privacy leakage of the solutions.
Experiments over standard CPPP domains show that the pro-
posed dependency-sharing strategies enable creating an effec-
tive projection without sharing all private dependencies.

1 Introduction
Designing autonomous agents that act collaboratively is an
important goal. A fundamental requirement of such collabo-
ration is to plan for multiple agents acting to achieve a com-
mon set of goals. Collaborative Privacy-Preserving Plan-
ning (CPPP) is a multi-agent planning task in which agents
need to achieve a common set of goals without revealing
certain private information (Brafman and Domshlak 2008).
In particular, in CPPP an individual agent may have a set
of private facts and actions that it does not share with the
other agents. CPPP has important motivating examples, such
as planning for organizations that outsource some of their
tasks.

There are two common approaches to CPPP: single search
and two-level search. Single search solvers operate by run-
ning a joint forward search (Nissim and Brafman 2014;
Štolba and Komenda 2017) where agents that apply public
actions send the resulting state to other agents that continue
the forward search. Two-level search solvers operate by cre-
ating a public plan that is shared by all agents, and then have
each agent extend it locally with private actions. In either
case, the agent publish dependencies between the public ac-
tions. For example, in a solver from the first approach, an
agent i that receives a state s from another agent j that ap-
plied a public action a1, also receives from j an index for its

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

own private facts. Later, when i continues the search from s
and executes another public action a2, it returns the state to
j with the same index. Thus, j learns that applying a1 may
have helped i in making a2 possible. We call this a private
dependency between the actions.

Maliah, Shani, and Stern (2016a) take this idea further,
and compute and publish a set of such private dependencies
in the form of artificial facts. This allows the agents to jointly
create and publish a projection of the problem that contains
all the public facts, public actions, and published artificial
facts that capture private dependencies. Such a projection
can be used to construct heuristics for single search CPPP
algorithms such as MAFS. In two-level search solvers, this
projection can be used to generate the public plan, defining
the public plan to be a solution to the problem defined by the
projection.

In many cases, however, the agents can construct a plan
requiring only a small portion of the private dependencies.
In such cases, it may be preferable to reveal only a part of the
dependencies, intuitively reducing the amount of disclosed
private information. In this paper we focus on the settings
where agents publish only a limited number of such depen-
dencies. We suggest 4 different methods for deciding which
dependencies should be published first, in order to construct
a plan with as little disclosed dependencies as possible.

We provide experiments on standard benchmarks from
the CPPP literature, showing that our methods, in many do-
mains, publish as little private dependencies as possible in
order to reach a plan. We also analyze the privacy leakage of
our methods (Štolba, Tožička, and Komenda 2018), show-
ing that, as one would intuitively expect, publishing more
dependencies leaks more private information.

2 Background
A MA-STRIPS problem (Brafman and Domshlak 2013) is
represented by a tuple 〈P, {Ai}ki=1, I, G〉 where: k is the
number of agents, P is a finite set of primitive propositions
(facts), Ai is the set of actions agent i can perform, I is the
start state, and G is the goal condition.

Each action a = 〈pre(a), eff (a)〉 is defined by its pre-
conditions (pre(a)), and effects (eff (a)). Preconditions and
effects are conjunctions of primitive propositions and liter-
als, respectively. A state is a truth assignment over P . G is
a conjunction of facts. a(s) denotes the result of applying



Figure 1: The rovers domain, where two rovers, r1 and r2 can ac-
cess two base stations b1 and b2, collaborating to take measure-
ments of a rock.

action a to state s. A plan π = (a1, . . . , ak) is a solution to
a planning task iff G ⊆ ak(. . . (a1(I) . . .).

Privacy-preserving MA-STRIPS extends MA-STRIPS by
defining sets of variables and actions as private, known only
to a single agent. privatei(P ) and privatei(Ai) denote the
variables and actions, respectively, that are private to agent
i. public(P ) is the set of public facts in P . publici(Ai), the
complement of privatei(Ai) w.r.t. Ai, is the set of public
actions of agent i. Some preconditions and effects of public
actions may be private, and the action obtained by removing
these private elements is called its public projection, and it
is known to other agents. When a public action is executed,
all agents are aware of the execution, and view the public ef-
fects of the action. The goals can be public, but can also be
private to a single agent. An agent is aware only of its local
view of the problem, that is, its private actions and facts, its
public actions, the public facts, and the public projection of
the actions of all other agents. That is, for public actions of
other agents, the agent’s local view contains only the public
preconditions and effects of these actions.

In the Rovers example in Figure 1, 2 Mars Rovers collab-
orate to explore rocks on the surface of Mars. The Rovers
need to perform some sensor measurements on rocks, and,
due to limited carriage capacity, can only carry 2 sensors at
a time. Unused sensors are stored in base stations, and can
be taken and returned to the base stations as needed.

The public facts in this problem are the sensors located
in bases, and the current condition of the target rock. The
public actions are taking and returning sensors to the base
stations, putting collected rock samples at the base stations,
and performing various examination actions on rocks, such
as taking an image, mining a mineral, or collecting a sample.
The sensors held by a rover and its position are private, and
the private actions are movement actions.

3 Algorithmic Approaches
There are two major approaches to planning in CPPP
(Torreño et al. 2017). The first approach begins by com-
puting a public plan, which is known as a coordination
scheme (Nissim, Brafman, and Domshlak 2010; Brafman
and Domshlak 2013; Torreno, Onaindia, and Sapena 2014).
Then, the agents independently extend the public plan into
a complete plan by adding private actions. In this extension
each agent attempts to achieve the preconditions of its own

public actions in the public plan.
For example, in the DPP planner (Maliah, Shani, and

Stern 2016b) the agents compute together a single agent pro-
jection of the CPPP problem that captures the dependencies
between public actions. That is, which public actions facili-
tate the execution of other public actions of that agent. In our
running example, such a dependency exists, e.g., for agent 1
between picking up a camera at base b1 and taking a photo
of the rock. These dependencies are computed using lim-
ited regression from the precondition of a public action to
the effects of other public actions. Given this projection, one
can compute a public plan using a standard classical plan-
ner. The projection is incomplete, and it is hence possible
that the generated public plan cannot be extended to a com-
plete plan, in which case DPP fails.

An alternative approach to computing a high level scheme
is to compute a complete plan directly. This can be done
by each agent running a distributed forward search algo-
rithm over its own action space, informing other agents of
advancements in the search process.

The first algorithm in this family is MAFS (Nissim and
Brafman 2014) — a distributed algorithm in which every
agent runs a best-first forward search to reach the goal. Each
agent maintains an open list of states, and in every iteration
each agent chooses a state in the open list to expand, gener-
ating all its children and adding them to the open list (avoid-
ing duplicates). Whenever an agent expands a state that was
generated by applying a public action, it also broadcasts this
state to all other agents. An agent that receives a state adds it
to the open list. For example, in Figure 1, when agent 1 puts
down the camera at base b2, it broadcasts this state to all
other agents. Agent 2 can now use this state to pick up the
camera and take a photo of the rock. To preserve privacy,
the private part of a state is obfuscated when broadcasting it,
e.g., by replacing the private facts with some index, such that
only the broadcasting agent knows how to map this index to
the corresponding private facts. Once the goal is reached, the
agent achieving the goal informs all others, and the search
process stops. MAFS can be extended in several ways.

Štolba and Komenda extended MAFS by applying two dif-
ferent open lists, one ordered by a local heuristic and the
other by a global heuristic. Maliah et al. Maliah, Shani, and
Brafman (2016) compute macros — sequences of private
actions bounded by public actions — to expedite the local
search process of the agent. For example, in Figure 1, once
agent 1 has found the sequence of actions allowing it to get
from base b1 with the camera to the rock, it can save this
sequence as a macro, allowing agent 1 to apply this macro
in all future explored states where he wants to get from b1 to
the rock, expediting the search process.

4 Partial Disclosure of Private Dependencies
We now present the main contribution of this paper — reduc-
ing the amount of disclosed private dependencies and hence,
the amount of disclosed information. In this paper, we dis-
cuss this in the context of the DP Projection method, which
can be used either in a dedicated planner called the DP Plan-
ner or as a heuristic for MAFS-based solvers (Maliah, Shani,



Figure 2: Local perspective of agent 1 private dependencies in the Rovers domain.

and Stern 2016a). We focus on the former application of the
DP projection and only briefly discuss possible extensions
to MAFS-based solvers.

For completeness and ease of exposition, we now describe
a brief and slightly modified version of the DP projection.
We say that a public action a facilitates the achievement of
a private fact f , if (1) f is an effect of a, or (2) there exists a
sequence of private actions a1, ..., ak such that: f is an effect
of ak, each ai takes as precondition an effect of some aj s.t.
j < i, and a1 takes as precondition an effect of a.

Definition 1 (Private Dependency). An action a is said to
have a private dependency if it has a private fact f as a
precondition such that one of the following hold: (1) there
is another public action a′ that facilitates achieving f , (2) f
is either true in the start state or can be achieved from it by
only applying private actions.

For example, in the rovers domain the action take-
image(rover1, rock1) has a private dependency because it
has a private precondition holding(rover1, camera1) that
the public action take(rover1, camera1, base1) facilitates
to achieve.

The agent jointly create a projection of the public prob-
lem, containing all the public facts, and a projected version
of the public actions. For each public action ai that requires
a private precondition fj , we create an artificial public fact
f ij . The projected public version of a requires f ij as precon-
dition. For each action a′ of the agent that facilitates the
achievement of the private fj , the agent publishes f ij as an
effect of a′, thus publishing the private dependency of a on
a′, although the way that fj is achieved remains obscured.

For a public action a1 of an agent i we introduce a pub-
lic artificial fact fa1

into the projection, signifying that a1
was executed. If a1 facilitates the achievement of a private
precondition of an action a2 of agent i, then the projected a2
will have fa1

as precondition. Hence, the artificial predicates
fa capture the private dependencies between public actions.

The DP projection described by Maliah, Shani, and
Stern (2016a) is created by having all agents compute and
publish all their private dependencies. In this work, we limit
to k the number of private dependencies of each agent is al-
lowed to publish, where k is a parameter. Technically, each
agent publishes all the artificial preconditions of all pub-
lic actions, as well as k artificial effects of public actions.
All public preconditions are published to avoid an over opti-
mistic projection, where agents believe that they can execute
public actions with no previous requirements.

4.1 Theoretical Analysis
Before describing several heuristics for choosing which k
private dependencies to share, we explore the theoretical im-
plications of limiting the number of private dependencies
that are being shared.

LetA andB be two DP projections. We denote byA ⊆ B
iff the set of private dependencies shared by A is a subset of
the set of private dependencies shared by B. Let plans(X)
be the set of all plans that can be generated by a DP projec-
tion X . Let Psolve(X) be the probability that a public plan
chosen randomly from plans(X) can be extended to a full
plan (i.e., include also the private actions of the agents).
Theorem 1. Given two DP projections A and B of the
same problem, such that A ⊆ B, then: (1) plans(A) ⊆
plans(B), and (2) Psolve(A) ≥ Psolve(B).

Proof outline: Sharing a private dependency reveals that
an additional artificial facts is achieved by some known pub-
lic action. Artificial facts are only used as preconditions
for some public actions. Thus, revealing private dependen-
cies only facilitates performing additional actions, and thus
more plans. The second part of Theorem 1 can be deduced
from the fact that each link in the high level plan has a
certain probability for extendability, and when increasing
the amount of dependencies, you increase the links amount,
bringing the probability to be lower than it was without that
link.



(a) Elevators, max dependencies = 6240 (b) Logistics, max dependencies = 150 (c) Rovers, max dependencies = 700

(d) Blocksworld, max dependencies =
1224 (e) Depot, max dependencies = 4320 (f) Zenotravel, max dependencies = 1560

(g) Driverlog, max dependencies = 5800 (h) Legend.

Figure 3: Number of solved problems for each amount of published dependencies. Graphs truncated after all methods solve all problems. The
maximal number of private dependencies in a problem in the chosen domain is shown for each domain

4.2 Ranking Published Dependencies
Above we discussed the implications of sharing k private
dependencies, but we did not specify how to choose which
k private dependencies to share. We now close this gap and
suggest 4 different methods for selecting which dependen-
cies to publish first. To better illustrate our methods, Figure 2
shows the local perspective of the private dependencies of
agent 1 in the Rovers domain. Black nodes in the first and
third column represent public actions, purple nodes in the
fourth column represent public facts, and blue nodes in the
second column denote artificial facts that capture private de-
pendencies between public actions. The public actions on
the first column generate the artificial facts while the public
actions on the third column require them as preconditions,
and generate the public facts. For ease of exposition, we la-
bel the artificial facts by the intuitive link that they represent,
although in reality, of course, the artificial facts have no such
meaningful names.

We take an iterative approach — all agents publish one
artificial effect of one public action at each iteration. If the
public projection cannot be solved, all agents publish a sec-
ond artificial effect of a public action, and so forth. Hence,
at each iteration an agent must decide on the next artificial
effect to publish, given the effects it has published thus far.

Our first method, which we denote m1, publishes artifi-
cial effects that are used as preconditions in as many pub-
lic actions as possible. In the example in Figure 2, we can

publish either the effect of take(rover1, camera1, base1),
or the effect of take(rover1, camera1, base2), represent-
ing taking the camera from either base, as it supplies a
precondition for 3 public actions (taking an image, min-
ing a mineral, and collecting a stone sample). Let us as-
sume that the effect of take(rover1, camera1, base1) was
published first. To avoid that in the next round the effect of
take(rover1, camera1, base2) will be chosen, providing the
same preconditions, we subtract from the number of precon-
ditions the amount of times this artificial effect was already
published. Hence, at the next step, all unpublished effects
have the same ranking.

The second method, which we denote m2, publishes an
effect that enables the achievement of as many public facts
as possible. An effect enables the achievement of a public
fact f if it is a precondition to an action that achieves f .
In our illustration, this is when there is a path from a blue
private fact to a purple public fact via a black node. Again,
we subtract the number of times that an artificial fact was
published as an effect to avoid repeatedly choosing the same
effect. Hence, if we again select at the first iteration the effect
of take(rover1, camera1, base1), at the second iteration we
will select another artificial fact.

The third method, denoted m3, attempts to maximize the
amount of public actions that can be executed. That is, in-
stead of publishing the artificial fact that provides a pre-
condition for as many actions, we publish the artificial fact



Domain Method Min. cost Max. cost Min. dep. cost Max. dep. cost Improvement
m1 47.70 95.90 75.00 48.10 34.92%
m2 47.70 95.50 73.70 48.10 33.49%
m3 43.50 101.00 74.90 43.90 37.69%Blocksworld

m4 43.50 101.00 74.80 43.90 37.52%
m1 48.89 65.00 61.37 48.89 16.97%
m2 48.89 64.63 61.37 48.89 16.97%
m3 45.06 50.28 49.94 45.06 8.87%Depot

m4 45.06 50.28 49.94 45.06 8.87%
m1 37.58 67.32 63.63 38.63 28.12%
m2 37.11 67.37 63.63 38.63 28.43%
m3 38.00 67.05 63.32 38.63 27.37%Driverlog

m4 38.00 67.11 63.32 38.63 27.37%
m1 65.15 87.10 68.00 80.60 4.60%
m2 65.05 88.05 70.55 80.60 8.23%
m3 64.60 84.45 68.85 80.60 8.37%Elevators

m4 65.15 84.10 68.75 80.60 5.87%
m1 59.65 66.10 65.45 60.25 8.52%
m2 59.65 66.10 65.45 60.25 8.52%
m3 59.75 66.20 65.45 60.25 8.47%Logistics

m4 59.75 66.20 65.45 60.25 8.47%
m1 72.85 80.10 78.35 75.30 6.59%
m2 72.60 77.40 75.20 75.30 3.58%
m3 72.90 77.75 75.85 75.30 3.76%Rovers

m4 73.10 77.70 75.80 75.30 3.36%
m1 68.25 73.20 69.90 71.20 2.97%
m2 68.25 73.20 69.90 71.20 2.97%
m3 68.00 73.45 69.90 71.20 2.73%Zenotravel

m4 68.00 73.45 69.90 71.20 2.73%
m1 57.15 76.39 68.81 60.43 14.67%
m2 57.04 76.04 68.54 60.43 14.60%
m3 55.97 74.31 66.89 59.28 13.89%Average

m4 56.08 74.26 66.85 59.28 13.46%

Table 1: Averaged cost over all of the problems for each domain. The data in the “Improvement” column is the percentage of the minimal
cost out of the first solved cost.

that enables as many public actions as possible. Here, in
the first iteration, publishing the effect of taking the cam-
era from either base, or the effect of clearing the stor-
age on the rover, both enable immediately one public ac-
tion (taking an image, and picking a sample into the stor-
age bin, respectively). Assuming that we first select, again,
take(rover1, camera1, base1), at the next iteration, taking
the mineral detector from either base station or clearing the
storage, both enable one additional action, and are hence
tied.

In this method we also need to balance between enabling
new public actions that have not been available given the
already published effects, and enabling new ways to apply
already possible actions, that may result in better plans. As
such, for each action a that is enabled by the published ef-
fect, we discount its score by 1

ca+1 where ca is the number
of times that a was enabled by previously published facts.
Hence, at the first time that an action is enabled, it provides
a score of 1, at the second time, a score of 1

2 , and so forth.

The last method, denoted m4, is similar to m3, but fo-

cuses not on the public actions, but on the public effects.
That is, we publish an effect that enables achieving as many
public facts as possible. Again, we discount the score of a
public fact by 1

cf+1 where cf is the number of times that
public fact f was enabled by previously published facts. In
this method, again taking the camera and clearing the stor-
age are tied in the first iteration. In the second iteration, how-
ever, if we again select take(rover1, camera1, base1) first,
taking the mineral detector has a better score, because it en-
ables the mineral drilling action, that has 2 public effects,
one of which was already obtained, and hence a score of 1 1

2 .

5 Empirical Analysis
We now evaluate our methods using benchmarks from
the CPPP literature (Štolba, Komenda, and Kovacs 2015).
For each problem in each benchmark domain, we ran the
projection-based solver (Maliah, Shani, and Stern 2016a)
with a growing number of revealed dependencies.

Figure 3 shows the number of problems that were solved
on each domain given the number of revealed dependencies



(a) Zenotravel. Blue line represents all methods.

(b) Logistics. Blue line represents all methods.

(c) Blocksworld.

(d) Legend.

Figure 4: Privacy leakage in the various domains. Problems on the
x-axis are sorted by increasing leakage.

by each agent. For each problem, we also computed a “Gold
Standard” value, which is the number of private dependen-
cies used by the plan that was generated when all depen-
dencies are known. The gold standard serves as a baseline
for comparison, indicating how many private dependencies
are sufficient to find a solution.1 In all domains, methodm3,
which prioritize enabling additional public actions, performs
the best. The rest of the methods vary in their performance.
For example, on Rovers and Blocksworld, m4, that priori-
tizes achieving additional public facts, performs the same as
m3 and better than the other methods, but on Elevators m4

performs the worst. On Elevators, arguably the domain with
the highest amount of required collaboration, differences be-
tween methods are most pronounced.

An interesting phenomena occurs, e.g., in Blocksworld,
where some problems are solved when not all dependencies
are available, but cannot be solved when more dependen-
cies are published. This is because the projection method
may produce a public plan that cannot be extended into

1This does not mean, however, that it is not possible to find a
solution if fewer private dependencies are revealed.

a complete plans. Our methods were often able to pub-
lish dependencies that resulted in plans that could be ex-
tended. Later, additional dependencies confused the planner
to choose plans that could not be extended. Zenotravel and
Logistics are the easiest domains in the sense that all meth-
ods managed to obtain solutions for all problems after shar-
ing only a small number of dependencies (note the scale in
the x axis of the Logistics results). Most problems in the
Driverlog domain were also easy in this sense, except for a
few difficult problems which required more dependencies.
On Depot, on the other hand, all methods perform much
worse than the gold standard, leaving much room for im-
provement.

Next, consider the cost of the generated public plan. Ta-
ble 1 shows for each domain the results of the following
averaged factors: (1) Min. cost, (2) Max. cost, (3) Min. dep.
cost – the solution cost for a projection with the least amount
of dependencies revealed, and (4) Max. dep. cost – the so-
lution cost for a projection with the maximal amount of
dependencies revealed. In addition, the column “Improve-
ment” shows the percentage of the minimal cost out of the
first solved cost (First solved cost−Minimal cost

F irst solved cost ∗ 100%). We
can see that on average (marked with green color at Table 1),
the improvement is only about 14% for the different meth-
ods, which means that the first time the problem was solved
gave us a pretty good solution (only 14% worse than the best
solution that was found when we revealed more dependen-
cies). However, the impact of sharing private dependencies
on solution cost varies significantly per domain. For exam-
ple, in Blocksworld the improvement is almost 40% while
for Zenotravel it is always less than 3%. Also, note that in
most cases there was almost no difference between the dif-
ferent heuristics (m1-4) in terms of solution cost.

Different methods require a different amount of published
dependencies to solve the problem. While it is intuitive that
revealing less dependencies preserves more privacy, this is
not necessarily so. To measure the amount of privacy pre-
served by each algorithm, we use the privacy leakage tool2

(Štolba, Tožička, and Komenda 2018) for measuring the
amount of private information that is leaked by each method.
Figure 4 shows the privacy leakage in 3 domains. For each
problem in each domain, we take the first time that it was
solved by each method, and generate the input for the pri-
vacy leakage tool. We measure the privacy leakage ratio
from the perspective of agent 1 in each problem. The “Gold
Standard” series’s privacy leakage is calculated as if we only
revealed those dependencies.

In Zenotravel and Logistics all methods publish the same
number of dependencies before reaching the goal, although
not necessarily the same dependencies. In these domains,
the privacy leakage was identical for all methods, except for
the gold standard, and is hence represented by a single line.
In Blocksworld, however, the privacy leakage ratio of the
different methods was not the same. As can be seen, there
is a direct correlation between the amount of published de-
pendencies required for computing a plan (Figure 3d), and
the amount of leaked privacy (Figure 4c). This further sup-

2http://github.com/stolba/privacy-analysis

http://github.com/stolba/privacy-analysis


ports our intuition that publishing less dependencies results
in higher privacy. However, analysis of privacy leakage in
CPPP is an ongoing research topic and it is difficult at this
stage to draw general conclusions.

6 Conclusion and Future Work
In this work we suggest methods for publishing only a
part of the private dependencies between public actions of
agents, in order to reduce the amount of privacy leakage.
We focus on the projection method that uses all private de-
pendencies to compute a public plan, showing that in many
cases a public plan can be computed with only a small por-
tion of the dependencies, and that our heuristic methods
rapidly find a good subset to share. We provide experiments
over standard benchmark domains, comparing the coverage
of our methods, as well as the amount of leaked privacy.

In the future we will expand our methods to MAFS, where
an agent may publish only some public states that it reaches,
and to other privacy preserving planning techniques as well.
Another thing that we shall do in the future is finding the
optimal set of dependencies that need to be revealed in order
to solve each problem. This shall replace the gold standard
that we have used now and will help us find better methods
that will outperform the methods that were described in this
paper. Future work will also include an analysis of the pri-
vacy leakage in the context of using the shared dependencies
in the MAFS planner. Finally, it is also worthwhile to assign
importance values to different dependencies, where each de-
pendency has an intrinsic value that needs to be considered.

Acknowledgements
This work is partially funded by ISF grant # 210/17 to Roni
Stern and by ISF grant # 1210/18 to Guy Shani.

References
[Brafman and Domshlak 2008] Brafman, R. I., and Domsh-
lak, C. 2008. From one to many: Planning for loosely cou-
pled multi-agent systems. In ICAPS, 28–35.

[Brafman and Domshlak 2013] Brafman, R. I., and Domsh-
lak, C. 2013. On the complexity of planning for agent teams
and its implications for single agent planning. Artificial In-
telligence 198:52–71.

[Maliah, Shani, and Brafman 2016] Maliah, S.; Shani, G.;
and Brafman, R. I. 2016. Online macro generation for pri-
vacy preserving planning. In ICAPS, 216–220.

[Maliah, Shani, and Stern 2016a] Maliah, S.; Shani, G.; and
Stern, R. 2016a. Stronger privacy preserving projections
for multi-agent planning. In the International Conference
on Automated Planning and Scheduling (ICAPS), 221–229.

[Maliah, Shani, and Stern 2016b] Maliah, S.; Shani, G.; and
Stern, R. 2016b. Stronger privacy preserving projections for
multi-agent planning. In ICAPS, 221–229.

[Nissim and Brafman 2014] Nissim, R., and Brafman, R. I.
2014. Distributed heuristic forward search for multi-agent
planning. JAIR 51:293–332.

[Nissim, Brafman, and Domshlak 2010] Nissim, R.; Braf-
man, R. I.; and Domshlak, C. 2010. A general, fully dis-
tributed multi-agent planning algorithm. In AAMAS, 1323–
1330.

[Štolba and Komenda 2017] Štolba, M., and Komenda, A.
2017. The madla planner: Multi-agent planning by com-
bination of distributed and local heuristic search. Artificial
Intelligence 252:175–210.

[Štolba, Komenda, and Kovacs 2015] Štolba, M.; Komenda,
A.; and Kovacs, D. L. 2015. Competition of distributed and
multiagent planners (codmap). The International Planning
Competition (WIPC-15) 24.

[Štolba, Tožička, and Komenda 2018] Štolba, M.; Tožička,
J.; and Komenda, A. 2018. Quantifying privacy leakage
in multi-agent planning. TOIT 18(3):28.

[Torreño et al. 2017] Torreño, A.; Onaindia, E.; Komenda,
A.; and Štolba, M. 2017. Cooperative multi-agent planning:
A survey. ACM Comput. Surv. 50(6).

[Torreno, Onaindia, and Sapena 2014] Torreno, A.; Onain-
dia, E.; and Sapena, O. 2014. FMAP: Distributed cooper-
ative multi-agent planning. Applied Intelligence 41(2):606–
626.


	Introduction
	Background
	Algorithmic Approaches
	Partial Disclosure of Private Dependencies
	Theoretical Analysis
	Ranking Published Dependencies

	Empirical Analysis
	Conclusion and Future Work

