
Decentralized Acting and Planning Using Hierarchical Operational Models

Ruoxi Li, Sunandita Patra, Dana Nau
Dept. of Computer Science, and Institute for Systems Research

University of Maryland, College Park, MD 20742, USA
rli12314@cs.umd.edu, patras@umd.edu, nau@cs.umd.edu

Abstract

We describe Dec-RAE-UPOM, a system for decentralized
multi-agent acting and planning in environments that are par-
tially observable, nondeterministic, and dynamically chang-
ing. Dec-RAE-UPOM includes an acting component, Dec-
RAE, and a planning component, UPOM. The acting com-
ponent is similar to the RAE acting engine (Ghallab, Nau,
and Traverso 2016), but incorporates changes that enable it
to be used by autonomous agents working independently in
a collaborative setting. Each agent runs a local copy of Dec-
RAE and has its own set of hierarchical operational models
that specify various ways to accomplish its designated tasks.
Agents can communicate with each other to exchange infor-
mation about their states, tasks, goals and plans in order to
cooperatively succeed in missions. Communication is not al-
ways guaranteed or free, and agents need to reason about
strategies to achieve optimal success and efficiency in mis-
sions under various constraints and with possibility of fail-
ures. To choose among alternative ways to accomplish tasks,
our current implementation of Dec-RAE uses the UPOM plan-
ner (Patra et al. 2020). We also describe our work-in-progress
on a new planner, D-UPOM, that incorporates some enhance-
ments for planning in multi-agent environments.

Introduction
Recent work on the integration of acting and planning (Ghal-
lab, Nau, and Traverso 2014; 2016) has advocated a hierar-
chical organization of an actor’s deliberation functions, with
online planning continually throughout the acting process.
This view has led to the development of the RAE acting al-
gorithm (Ghallab, Nau, and Traverso 2016), and to the de-
velopment of three successively better planning-and-acting
systems that use RAE as their acting component: APE (Pa-
tra et al. 2019b), RAE/RAEplan (Patra et al. 2019a), and
RAE/UPOM (Patra et al. 2020).

To predict an action’s outcome, most AI planning systems
use an abstract descriptive model (e.g., a PDDL action defi-
nition). To perform an action, an acting system uses an oper-
ational model of the action – a piece of code telling the actor
what to do. In systems that do both planning and acting, a
key problem is the need for consistency between what the

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

descriptive model predicts, and what the operational model
says to do. The APE, RAE/RAEplan, and RAE/UPOM sys-
tems circumvent this problem by having each system’s plan-
ner use the same operational model that RAE (the actor)
uses. To predict the action’s outcome, the planner runs the
operational model in a simulated environment. This enables
APE, RAE/RAEplan, and RAE/UPOM to operate effectively
in environments that are partially observable, nondetermin-
istic, and dynamically changing due to exogenous events.

A key limitation of the above work is that it is single-agent
planning and acting. Although several of the above papers
use test domains involving multiple robots, in each case the
planning and acting is done by a single centralized system.
In the current paper we describe our work on extending the
approach to accommodate multiple agents that do their plan-
ning and acting in a decentralized fashion. Our contributions
are as follows:

• We introduce Dec-RAE-UPOM, a decentralized multi-
agent acting-and-planning engine that uses operational
models like the ones used in RAE. It consists of two com-
ponents, Dec-RAE and UPOM:

– Dec-RAE, the acting component, is a generalization of
RAE. Multiple agents can run Dec-RAE concurrently
in a decentralized fashion, and can use it to perform
actions and to communicate with each other.

– UPOM, the planning component, is the same planner
used in the RAE/UPOM system. UPOM uses a Monte-
Carlo rollout technique based on the well-known UCT
algorithm (Kocsis and Szepesvári 2006).

• We present experimental evaluations of Dec-RAE-UPOM
in robot foraging problems. The results show that addi-
tional Monte-Carlo rollouts in the planning component
improve the performance of the acting component in both
single-agent and multi-agent settings. We also observe
that communication enables coordination between agents
thereby improves the performance of multi-agent forag-
ing to a large extent.

• We describe our ongoing work on a decentralized version
of UPOM, D-UPOM. UPOM in Dec-RAE does not support
inter-agent plan coordination. But in D-UPOM, if an agent
i needs to outsource a task τ to some other agent, i can ask

the other agents to predict how well they can accomplish
τ , and outsource τ to the agent that can do the best job.

The rest of this paper is organized into sections on each of
the following topics: (1) related work, (2) our formalism, (3)
Dec-RAE-UPOM, (4) our experimental results, (5) our ongo-
ing work on D-UPOM, and (6) limitations and opportunities
for future work.

Related work
Hierarchically organized deliberation techniques such as
HTN planning (Nau et al. 1999) and refinement acting
(Ghallab, Nau, and Traverso 2016) are well-established in
the AI planning literature. They have substantial advantages
in working out interactions in more abstract plan spaces,
thereby pruning away large portions of the more detailed
search spaces (Durfee 2001).

Some AI planning researchers have been advocating a
change in focus to a combination of planning and acting
that incorporates 1) hierarchically organized deliberation, in
which each action in a plan may be a task that may need fur-
ther refinement and planning; and 2) continual planning and
deliberation, in which the actor monitors, refines, extends,
updates, changes and repairs its plans throughout the acting
process, using both descriptive and operational models of
actions (Ghallab, Nau, and Traverso 2016).

To predict an action’s outcome, most AI planning sys-
tems use an abstract descriptive model (e.g., a precondition-
and-effects model). To perform an action, an acting system
must use a more-detailed operational model that tells what
to do. In the RAE acting system (Ghallab, Nau, and Traverso
2016), these operational models are collections of refine-
ment methods. A refinement method for a task t specifies
how to perform t, i.e., it gives a procedure for accomplish-
ing t by performing subtasks, commands and state variable
assignments. The procedure may include any of the usual
programming constructs: if-then-else, loops, etc. It recur-
sively refines abstract activities into less abstract activities,
ultimately producing commands to the execution platform.
When several method instances are available for a task, RAE
is capable of trying alternative methods in nondeterministic
choices or making the choice using some heuristics.

Monte Carlo tree search (MCTS) is a promising approach
for online planning because it efficiently searches over long
planning horizons and is anytime (Browne et al. 2012). In
treating the choice of child node to expand in the MCT as
a multiarmed bandit problem, the UCT algorithm balances
the tradeoff between exploration and exploitation, in order to
find a near-optimal plan. The UCT-like UPOM planner (Pa-
tra et al. 2020) performs MCTS over a space of refinement
trees generated using RAE’s refinement methods, in order to
find a near-optimal method for RAE to use for refining one
of its tasks. RAE and UPOM thus constitute an integrated re-
finement acting-and-planning system in which both acting
and planning use RAE’s operational models.

Distributed problem solving is applied to a subfield of dis-
tributed artificial intelligence or multiagent systems that em-
phasizes on getting agents to work together well to solve
problems that require collective effort (Durfee 2001). In

Multi-Agent Planning, the planning process is either cen-
tralised (e.g., a master agent produces distributed plans for
multiple slave agents to act upon), or decentralized (i.e.,
the planning process involves multiple agents) (Cardoso and
Bordini 2017). Hierarchical deliberation has substantial ad-
vantages in working out interactions in more abstract plan
spaces, thereby pruning away large portions of the more de-
tailed search spaces (Durfee 2001).

The main steps of distributed hierarchical planning have
been summarized in various work (Weerdt and Clement
2009; Cardoso and Bordini 2017; Durfee 2001): 1) global
task (goal) refinement, decomposition of the global task into
subtasks; 2) task allocation, use of task-sharing protocols to
allocate tasks (goals); 3) coordination during planning, co-
operative planning mechanisms that generates a globally op-
timal solution for the problem; 4) coordination during plan
execution, mechanisms that carry out the solution, prevent
conflicts, repair the plan and replan.

Dix et al. (2003) describe a formalism to integrate the
HTN planning system SHOP (Nau et al. 1999) with the
IMPACT multi-agent environment. While the formalism is
a multi-agent system, the planning is carried out in a cen-
tralized fashion by a single agent, A-SHOP. HTN planning
has been used for coordination in robot soccer (Obst and
Boedecker 2006), where low-level primitive tasks are per-
formed differently by agents depending on their roles in the
team task, high-level tasks are expanded to subtasks in a
centralized planner. Clement, Durfee, and Barrett (2007) de-
veloped an algorithm for hierarchical refinement planning
and centralized plan co-ordination for actions with tempo-
ral extent. Summary information is derived from each high-
level task in a plan hierarchy about all of its potential needs
and effects under all of its potential refinements, then ex-
changed among agents. Coordination at abstract levels al-
lows each agent to retain some local flexibility to refine its
high-level task without jeopardizing coordination or trigger-
ing new rounds of renegotiation.

Among studies in decentralized hierarchical planning,
market-based task-allocation has been applied to complex
tasks that can be hierarchically decomposed (Zlot and Stentz
2006). A multi-agent model for plan synthesis that produces
a global shared plan is based on unified HTN and POP ap-
proaches (Pellier and Fiorino 2007), where agents exchange
proposals and counter-proposal to refine flaws. Planner9
(Magnenat, Voelkle, and Mondada 2009) is a HTN planner
that considers different robots as computer clusters and dis-
tributes the planning of any task to any robot, thus takes ad-
vantage of all the available computational power using sim-
ple synchronization.

Our approach shares some similarities with reinforce-
ment learning (RL) (Kaelbling, Littman, and Moore 1996;
Sutton and Barto 1998; Geffner and Bonet 2013; Leonetti,
Iocchi, and Stone 2016; Garnelo, Arulkumaran, and Shana-
han 2016), since MCTS is also a typical technique in RL to
increase sample efficiency. In Model-based RL, the model
(e.g., system dynamics) is learned from real experience and
gives rise to simulated experience. While in our work, the
model which we use to construct the simulator, is given.

Decentralized partially-observable Markov decision pro-

cess (Dec-POMDP) is a framework for a team of collabo-
rative agents to maximize a global reward based on local
information. Each agent’s individual policy maps from its
action and observation histories to actions (Oliehoek 2012).
Unfortunately, optimally solving Dec-POMDPs is NEXP-
complete (Bernstein, Zilberstein, and Immerman 2013). In
single-agent (i.e., MDP) domains, the options framework
(Sutton, Precup, and Singh 1999) uses higher-level, tem-
porally extended macro-actions (or options) to represent
and solve problems, resulting in significant improvement in
the performance. Amato et al. extend the framework to the
multi-agent case by introducing a Dec-POMDP formulation
with macro-actions modeled as options. It is an offline plan-
ner that generates a policy to select the best option on each
state, while our approach is an planning and acting engine
that selects the best refinement method for each task online.

To our knowledge, there is no prior work on decentral-
ized refinement acting and (hierarchical) planning that uses
operational models.

Formalism
Here we formalize a decentralized multi-
agent refinement planning and acting domain
with operational models as a tuple Σ =
(S, I, T , {Ωi}, {Oi}, {Bi}, {Ci}, {Pi}, {Di}, {Ri}, {Mi}),
where
• S is a set of world states the agents may be in, where we

represent each state s using a state variable formulation
similar to the one in Ghallab, Nau, and Traverso (2016).

• I is a finite set of agents,
• T is a finite set of tasks and events the agents may have

to deal with, where each task τ ∈ T has 0 or more than 0
relevant methods in {Mi},

• Ωi is a finite set of observations for each agent i,
• Oi is a set of observation probability functions for each

agent, i, Ω× Ci × S → [0, 1],
• Bi is a set of belief states that agent i ∈ I may have,
• Ci is a finite set of primitive actions (commands) that can

be carried out by the actuators and sensors on agent i’s
execution platform,

• Pi is a set of state transition probabilities, S × Ci × S →
[0, 1],

• Di is a set of time durations, S × Ci × S → R,
• Ri is a finite set of reward (or cost) functions that are

associated with entering some states, i.e., S → R,
• Mi is the set of refinement methods, each of which spec-

ifies how agent i would perform a task or respond to a
event τ ∈ T .
A refinement method is composed of 4 elements, where

1) head specifies the name and parameters of the method,
where the number of parameters could be arbitrary greater
than that in the task which it is related to, 3) agent is the
agent subject that owns (or is responsible for) the method,
3) tasks indicates the task that the method is capable of re-
fining, 3) body gives a procedure to accomplish a the task by

performing subtasks, commands and state variable assign-
ments, where the procedure may include any programming
constructs (e.g., if-then-else, loops, etc.). We get a refine-
ment method instance by assigning values to the free pa-
rameters of a method.

A refinement tree (Patra et al. 2020) is composed of 3
types of nodes: 1) a disjunction node is a task followed by its
applicable method instances; 2) a sequence node is a method
instancem followed by all the steps; and 3) a sampling node
for an action a has the possible nondeterministic outcomes
of a as its children.

Refinement planning under this formalism is essentially a
tree search procedure over the space of refinement trees in
order to find a near-optimal method to use for refining a task
under the context at hand.

Let us illustrate this formalism by an example, where sev-
eral robots (drones and roombas) forage for some target ob-
jects (e.g., dirt) in a initially known terrain. This domain in-
cludes but is not limited to

• a set of states S that gives the positions of agents and dirt

• a set of agents I = {d1, r1, r2}, where d1 is a drone, r1
and r2 are roombas,

• a set of refinement methods Mr1 ⊇ {m1-cleanSet(s),
m2-cleanSet(s), m1-clean(s), m1-broadcastGoal(g)} for
agent r1,

• a set of refinement methods Mr2 ⊇ {m3-cleanSet(s, l),
m2-clean(s)} for agent r2,

• a set of refinement methods Md1 ⊇ {m1-search(a),
m1-planTrajectory(a), m1-flyTo(l)} for agent d1,

• a set of commands Cd1 ⊇ {observe(l)} for agent d1,

• a set of tasks T ⊇ {search(a), cleanSet(s), clean(l),
planTrajectory(a), flyTo(l)}.

m1-search(a)
agent: d1

task: search(a)
body: trajectory← do task planTrajectory(a)

for l in trajectory:
do task flyTo(l)
execute command observe(l)
if l has dirt:

outsource task clean(l) to agent i ∈{r1, r2}

m1-search(a) is a method for the drone d1 to search area
a along a trajectory, perform the command observe(l) to
check if an intermediate location l is dirty before outsourc-
ing a task to a roomba i to clean up the location. Suppose
roomba r1 has one method for the task clean(l), roomba r1
has two method for the task clean(l), there would be 3 ap-
plicable method instances in total to the task that is being
outsourced, as either r1 or r2 could be assigned to i.

m1-cleanSet(s)
agent: r1

task: cleanSet(s)
body: if s is ∅:

return
l← closest l ∈ s
do task broadcastGoal(l)
do task clean(l)
s← s \ l
do task cleanSet(s)

m2-cleanSet(s)
agent: r1

task: cleanSet(s)
body: if s is ∅:

return
l← random l ∈ s
do task clean(l)
s← s \ l
do task cleanSet(s)

Task cleanSet(s) requires a set of locations s to be
cleaned. Agent r1 has two methods that can refine the task,
m1-cleanSet(s) and m2-cleanSet(s). m1-cleanSet(s) is a
greedy method for roomba r1 to clean the location set s,
where roomba r1 cleans the closest location in s recursively.
m2-cleanSet(s) makes random choice of the first location to
clean and cleans the rest of the set recursively.

m3-cleanSet(s, l):
agent: r2

task: cleanSet(s)
body: if s is ∅:

return
do task clean(l)
s← s \ l
do task cleanSet(s)

Agent r2 also has a simplemethod m3-cleanSet(s, l) that
refine task cleanSet(s), where l indicates the first location to
clean. l’s value is automatically assigned with some prede-
fined rules (e.g, l ∈ s). In that case, the number of applicable
method instances to task cleanSet(s) for agent r2 is |s|.

Dec-RAE-UPOM
RAE (Ghallab, Nau, and Traverso 2016) is a refinement
acting engine that uses a collection of hierarchical refine-
ment methods with operational model to generate and tra-
verse a refinement tree. UPOM (Patra et al. 2020) is a UCT-
like Monte-Carlo tree search simulation procedure over the
space of refinement trees in order to find a near-optimal
method in RAE to accomplish the task under the context at
hand. A decentralized version of RAE using UPOM, Dec-
RAE-UPOM is a decentralized multi-agent planning and act-
ing engine with UCT-like planning procedure using opera-
tional models that enables heterogeneous robots to cooper-
atively operate in a partially-observable, non-deterministic
and dynamic environment with exogenous events and con-
current tasks. As is shown in Figure 1, each agent has its
own RAE, UPOM, domain knowledge, execution platform,
and internal state information.

Belief, desire and intention (Rao and Georgeff 2000) rep-
resents the information, motivational, and deliberative states
of the agent. Respectively, we specify 4 types of commu-
nication messages that one agent can send to another: 1)
state, the state information obtained from the agent’s sen-
sors, i.e., its belief state set about the world which is stored
in a predefined data structure; 2) goal, a desire that has been
adopted for active pursuit by the agent; 3) task, a desire that
the agent needs other agents to accomplish (e.g. a subtask τ
in agent A’s method that needs to be accomplished by agent
B); 4) plan, the refinement tree or the estimated reward λ of
its root node that is associated with the process of refining a
task (plan communication is not yet supported and UPOM
does not require communication).

Agent are built with both actuators and sensors to send
and receive communication signals. Commands are given to
agents to sense the communication network, send messages,
or read messages. Received messages are buffered in mem-
ory waiting for the agent to read. We acknowledge the fact
that communication is neither free, nor guaranteed to suc-
ceed. Therefore, each communication command is associ-
ated with a cost and a probability of success just like any
other commands.

Dec-RAE agents, without using any planner, are able to
reactively coordinate their actions through state, goal and
task communication. With UPOM, each agent i can plan for
the selection of method instances fromMi to resolve a tasks
locally.

Experimental Evaluation
Multi-agent Foraging is one of the canonical testbeds for
cooperative multi-agent systems, in which a collection of
robots has to search and transport objects to specific loca-
tions (Zedadra et al. 2017). We developed a Vacuum World
Simulator (Figure 2) where multiple roomba agents coop-
eratively clean up a finite amount of dirt objects scattered
randomly within an n × n grid. Each dirt object is associ-
ated with a value. Each roomba agent has limited amount of
time budget to carry out durative actions including moving
forward, turning left, turning right, picking up a dirt right
beneath it, and communicating with other agents. As a pre-
liminary experiment, actions and observations are determin-
istic, communication between agents is free and guaranteed.
The objective is for the roomba team to maximize the score
(i.e., the total value from collecting dirt objects) within the
limit of its time budget.

We tested and compared the performance of roomba
agents with several different types of decision strategies
(Figure 3 & 4) denoted by following remarks: 1) Greedy,
which means the agent has a greedy method, i.e., m1-
cleanSet(s), that repeatedly pursues the nearest target; 2)
Simple, which means the agent has a simple method, i.e.,
m1-cleanSet(s, l), to pursue a list of targets; 3) UPOM ,
which indicates that the agent has the same methods as a
simple agent, but uses UPOM to plan for the choice of
the method instances; 4) n, the number of UCT rollouts
that is configured in a UPOM agent; 4) Comm, which in-
dicates that goal communication is enabled by doing task
broadcastGoal(g), where the agent broadcasts information

Figure 1: The system architecture of Dec-RAE-UPOM.

Figure 2: The Vacuum World Simulator.

about the target that it is actively pursuing. Within each ex-
periment, all agents (if there are more than one agent) use
the same strategy.

The single-agent experiments (Figure 3) show that a
UPOM agent performs much better than a simple agent,
since a reactive simple agent would clean the set of lo-
cations in an arbitrary sequence, while the UPOM agent
tries to plan for the optimal sequence. The performance of
a UPOM agent further improves as the number of UCT
rollouts increases, which surpasses a greedy agent’s per-
formance with 50 rollouts. In multi-agent experiments (Fig-

Figure 3: For each experiment, we deploy 1 roomba agent
along with 16 Dirt objects to a 7 × 7 grid. Each roomba
agent type’s average score is obtained from solving 50 ran-
domly generated problems.

ure 4), with goal communication enabled, agents would be
aware of each other’s goals, thus, are able to adjust their
own goals accordingly to avoid duplication of efforts. We
observe a 48.5% improvement in the greedy agent team’s
performance with goal communication, compared to the per-
formance without any communication. The UPOM agent
team with comm performs slightly better than a greedy
agent team with comm, which is consistent to the result
from the single-agent experiments.

Figure 4: For each experiment, we deploy 4 roomba agents
along with 16 Dirt objects to a 10 × 10 grid. Each roomba
team’s average score is obtained from solving 20 randomly
generated problems.

D-UPOM
Each of the agents with Dec-RAE-UPOM has independent
domain knowledge, execution platform, and state informa-
tion. if an agent i needs to outsource a task τ to some other
agent, without plan communication, agent i has no idea how
well they can accomplish τ . Therefore, agent i is only able
to outsource the task to an agent that is selected randomly
or based on agent i’s subjective heuristics. In order to gen-
erate more optimal plans, agents need to coordinate with
each other in the planning process and communicate their
local plans with each other. Here we describe our work-in-
progress on a decentralized version of UPOM, D-UPOM (Al-
gorithm 1) that addresses the above issue. In D-UPOM, if an
agent i needs to outsource a task τ to some other agent, i can
ask other agents to predict how well they can accomplish τ ,
and outsource τ to the agent that can do the best job.

Firstly, we let γ(s, c) be the set of states that may
be reached after performing command c in state s.
Applicable(b, τ) is the set of method instances applicable
to τ in belief state b. The current context for an incom-
ing external task τ is represented via a refinement stack σ
which keeps track of how much further RAE has progressed
in refining τ . next(σ, s) is the refinement stack resulting
by performing m[i] in state s, where (τ,m, i) = top(σ).
Abstraction(b) is the abstracted belief state that is used in
D-UPOM’s simulated environment. Responsible(m) is the
agent subject that is responsible for executing method m.
R(s) is the reward obtained from entering state s.

When an agent has to perform the task τ in a belief state
b and a stack σ, it calls Select-Method (b, τ, σ, dmax, nro)

Select-Method(b, τ, σ, dmax, nro):
1 m̃← argmaxm∈Applicable(b,τ)h(τ,m, b)

d← 0
2 repeat

d← d+ 1
3 b′ ← Abstraction(b)

for nro times do
D-UPOM (b′, push((τ, nil, nil), σ), d)

m̃← argmaxm∈MQs,σ(m)
until d = dmax or searching time is over
return m̃

D-UPOM(s, σ, d):
if σ = 〈〉 then return 0
(τ,m, i)← top(σ)

4 if d = 0 then return h(τ,m, s)
if m = nil or m[i] is a task τ ′ then

if m = nil then τ ′ ← τ # for the first task
if Ns,σ(τ ′) is not initialized yet then

5 M ′ ← Applicable(s, τ ′)
if M ′ = 0 then return 0
Ns,σ(τ ′)← 0
for m′ ∈M ′ do

Ns,σ(m′)← 0
Qs,σ(m′)← 0

Untriedm ← {m′ ∈M ′|Ns,σ(m′) = 0}
if Untriedm 6= ∅ then

mc ← random selection from Untriedm
else mc ← argmaxm∈M ′φ(m, τ ′)
σ′ ← push((τ ′,mc, 1), next(σ, s))
a← Responsible(mc)
if a is self then λ← D-UPOM(s, σ′, d− 1)

6 else λ← Request-Plan(a, s, σ′, d− 1)

7 Qs,σ(mc)← Ns,σ(mc)×Qs,σ(mc)+λ
1+Ns,σ(mc)

Ns,σ(mc)← Ns,σ(mc) + 1
return λ

if m[i] is an assignment then
s′ ← state s updated according to m[i]
return D-UPOM(s′, next(σ, s′), d)

if m[i] is a command c then
s′ ← Sample(s, c)
return R(s′) + D-UPOM(s′, next(σ, s′), d− 1)

Algorithm 1: D-UPOM and Select-Method.

(Algorithm 1) with two control parameters: nro, the num-
ber of rollouts, and dmax, the maximum rollout length (total
number of sub-tasks and actions in a rollout). Select-Method
performs an anytime progressive deepening loop calling D-
UPOM nro times in a simulated environment based on the
belief state b, until the rollout length reaches dmax or the
search is interrupted. The selected method instance m̃ is ini-
tialized according to a heuristic h (line 1).

Just like UPOM, D-UPOM performs one UCT rollout re-
cursively down the refinement tree until depth d is reached
for stack σ. During the recursion, if another agent a is re-

sponsible for executing methodmc, one needs to request the
agent to plan for mc by calling Request-Plan(a, s, σ′, d−1)
(line 6). Agent a is supposed to receive the request, use its
own D-UPOM to perform one UCT rollout further down the
refinement tree recursively, and send back the resulting esti-
mated total reward λ from executing mc. Request-Plan will
return 0 if it times out.

D-UPOM naturally supports market-based task allocation:
when the task τ ′ is potentially outsourced to different agents
who are capable of accomplishing it, each agent plans for
τ ′ using its methods and return the corresponding estimated
rewards, the agent who has a method that obtains the highest
reward will be chosen to accomplish τ ′.

As a work-in-progress, D-UPOM has not yet been pro-
grammed or tested. We will further develop its theory, pro-
gram and experiments in our future work.

Discussion
In this paper we have described Dec-RAE-UPOM, a system
for decentralized multi-agent refinement planning and act-
ing that uses operational models similar to the ones used
in the RAE and RAE/UPOM systems. In our evaluations of
Dec-RAE-UPOM’s performance in robot foraging problems
using the Vacuum World Simulator, the results show that the
system’s performance is improved by performing additional
Monte-Carlo rollouts in UPOM, and that communication be-
tween agents also improves the performance. We have also
described our work-in-progress on the D-UPOM planner, a
decentralized version of UPOM that is expected to generate
more optimal plans by exploiting plan information obtained
from other agents.

Multi-agent systems are usually affected by the combina-
torial explosion of the state space due to increased amount
of agents. A decentralized planner avoids this problem by
making each agent plan locally and communicate their plans
with each other in order to cooperate. However, functional-
ities such as action synchronization and conflict resolution
between decentralized agents are not currently supported by
our system.

The plan communication in D-UPOM only delivers min-
imum information, i.e., the total reward obtained from sam-
pling the method. In a similar planner, D-UCB in decen-
tralized Monte Carlo Tree search (Dec-MCTS) (Best et al.
2018), agents exchange more explicit plan information back
and forth so the planner in each agent is able to sample all
the other agents’ actions according to their plans. D-UPOM
has the same potential in exchanging more plan information
such as a explicit refinement tree and its associatedQ values,
which might help with plan merging, conflict resolution and
action synchronization. Our formalism represents action du-
rations, and we intend to reason about plan merging, conflict
resolution and action synchronization as a temporal planning
and scheduling problem in our future work.

In our experiments, communication commands have 0
cost (reward) and are guaranteed to succeed. We have not
done enough investigations in cases where communication
is not always guaranteed or free, and agents might need
to proactively search for communication signals (e.g., by
going to a high ground where there is higher chance to

re-establish communication with others). A broader ques-
tion that automotive agents needs to decide is who, when,
how and what to communicate (Balch and Arkin 1970;
Wei, Hindriks, and Jonker 2014). As an example, Dec-
MCTS reasons about the value of communication messages
to decide when and to whom each robot should communi-
cate in order to minimize the communication cost. We hope
our work could be developed to be more resilient and intel-
ligent in terms of communication.

Since UPOM has been integrated with neural networks
that learn to choose methods and approximate heuristics, we
are also interested in extending learning to our future work.

Acknowledgements
This work has been supported in part by DARPA task or-
der HR001119F0057, Lockheed Martin research agreement
MRA17001006, NRL grant N00173191G001, and ONR
grant N000142012257. The information in this paper does
not necessarily reflect the position or policy of the funders,
and no official endorsement should be inferred.

References
Amato, C.; Konidaris, G.; Kaelbling, L.; and How, J. 2019.
Modeling and planning with macro-actions in decentralized
pomdps. Journal of Artificial Intelligence Research 64:817–
859.
Balch, T., and Arkin, R. 1970. Communication in reactive
multiagent robotic systems. Autonomous Robots 1.
Bernstein, D. S.; Zilberstein, S.; and Immerman, N. 2013.
The complexity of decentralized control of markov decision
processes.
Best, G.; Forrai, M.; Mettu, R. R.; and Fitch, R. 2018.
Planning-aware communication for decentralised multi-
robot coordination. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), 1050–1057.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in Games 4(1):1–43.
Cardoso, R., and Bordini, R. 2017. A multi-agent extension
of a hierarchical task network planning formalism. ADCAIJ
6:5.
Clement, B.; Durfee, E.; and Barrett, A. 2007. Abstract
reasoning for planning and coordination. J. Artificial Intel-
ligence Research (JAIR) 28:453–515.
Dix, J.; Muñoz-Avila, H.; Nau, D. S.; and Zhang, L. 2003.
Impacting shop: Putting an ai planner into a multi-agent en-
vironment. Annals of Mathematics and Artificial Intelli-
gence 37(4):381–407.
Durfee, E. H. 2001. Distributed problem solving and
planning. In Luck, M.; Mařı́k, V.; Štěpánková, O.; and
Trappl, R., eds., Multi-Agent Systems and Applications: Eu-
ropean Agent Systems Summer School, EASSS 2001, 118–
149. Springer.

Garnelo, M.; Arulkumaran, K.; and Shanahan, M. 2016.
Towards deep symbolic reinforcement learning. CoRR
abs/1609.05518.
Geffner, H., and Bonet, B. 2013. A Concise Introduction to
Models and Methods for Automated Planning. Morgan &
Claypool.
Ghallab, M.; Nau, D.; and Traverso, P. 2014. The actors
view of automated planning and acting: A position paper.
Artificial Intelligence 208:1 – 17.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press.
Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996.
Reinforcement learning: A survey. JAIR 4:237–285.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. 282–293.
Leonetti, M.; Iocchi, L.; and Stone, P. 2016. A synthesis of
automated planning and reinforcement learning for efficient,
robust decision-making. 241:103–130.
Magnenat, S.; Voelkle, M.; and Mondada, F. 2009. Planner9,
a HTN planner distributed on groups of miniature mobile
robots.
Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 1999.
Shop: Simple hierarchical ordered planner. In Proceedings
of the 16th International Joint Conference on Artificial In-
telligence - Volume 2, IJCAI’99, 968–973. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.
Obst, O., and Boedecker, J. 2006. Flexible coordina-
tion of multiagent team behavior using HTN planning. In
Bredenfeld, A.; Jacoff, A.; Noda, I.; and Takahashi, Y.,
eds., RoboCup 2005: Robot Soccer World Cup IX, 521–528.
Berlin, Heidelberg: Springer.
Oliehoek, F. A. 2012. Decentralized POMDPs. Berlin,
Heidelberg: Springer Berlin Heidelberg. 471–503.
Patra, S.; Ghallab, M.; Nau, D.; and Traverso, P. 2019a.
Acting and planning using operational models. Proceed-
ings of the AAAI Conference on Artificial Intelligence
33:7691–7698.
Patra, S.; Ghallab, M.; Nau, D.; and Traverso, P. 2019b.
APE: An acting and planning engine. Advances in Cognitive
Systems 7.
Patra, S.; Mason, J.; Kumar, A.; Ghallab, M.; Traverso, P.;
and Nau, D. 2020. Integrating acting, planning and learning
in hierarchical operational models.
Pellier, D., and Fiorino, H. 2007. A unified framework based
on HTN and POP approaches for multi-agent planning. In
2007 IEEE/WIC/ACM International Conference on Intelli-
gent Agent Technology (IAT’07), 285–288.
Rao, A., and Georgeff, M. 2000. Bdi agents: From theory
to practice.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing - an introduction. Adaptive computation and machine
learning. MIT Press.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
mdps and semi-mdps: A framework for temporal abstraction

in reinforcement learning. Artificial Intelligence 112(1):181
– 211.
Weerdt, M., and Clement, B. 2009. Introduction to planning
in multiagent systems. Multiagent and Grid Systems 5:345–
355.
Wei, C.; Hindriks, K.; and Jonker, C. 2014. The role of com-
munication in coordination protocols for cooperative robot
teams. In ICAART 2014 - Proceedings of the 6th Interna-
tional Conference on Agents and Artificial Intelligence, vol-
ume 2.
Zedadra, O.; Jouandeau, N.; Seridi, H.; and Fortino, G.
2017. Multi-agent foraging: state-of-the-art and research
challenges. Complex Adaptive Systems Modeling 5:1–24.
Zlot, R., and Stentz, A. 2006. Market-based multirobot co-
ordination for complex tasks. The International Journal of
Robotics Research 25(1):73–101.

