
A Framework to prove Strong Privacy in Multi-Agent Planning
Patrick Caspari,1 Robert Mattmüller,2 Tim Schulte3

Department for Computer Science
Albert-Ludwigs-Universität Freiburg

Georges-Köhler-Allee 52
79110 Freiburg, Germany

1caspari@informatik.uni-freiburg.de,
2mattmuel@informatik.uni-freiburg.de,

3schultet@tf.uni-freiburg.de

Abstract

Privacy in multi-agent planning is an important and well-
discussed problem. But it is difficult to prove whether an al-
gorithm allows the deduction of private values. We introduce
a framework that allows us to prove whether the messages
transmitted during a Multi-Agent planning instance maintain
strong privacy of the problem. It can be verified for an algo-
rithm in general or for a specific execution of the algorithm on
a planning task. We then use the framework to show that an
A∗-based secure-MAFS algorithm is in general not strongly
privacy preserving.

Introduction
With the commercialization of automated machines and in-
creasingly flexible and automated industry as well as the in-
crease in computing power, the demand for algorithms that
allow cooperative planning is high. But especially in the in-
dustry, where business secrets can be the foundation of suc-
cess and their disclosure might mean the loss of many jobs,
any cooperation can only be secure with tight guarantees for
the privacy of their assets.

Several concepts of privacy exist and are used, depending
on the degree of privacy that is necessary in the adopted do-
main. On the lower end of this range stands the notion of
weak privacy, which is satisfied if an algorithm doesn’t ex-
plicitly communicate private values to partners. While this is
easy to verify, it doesn’t account for the fact, that the trans-
mitted information might still be used to deduce private in-
formation. On the other end, strong privacy requires that no
agent can deduce the value or even the existence of another
agent’s private variables (Brafman 2015). While this defini-
tion is very strong, it is unclear how to verify whether an
algorithm actually upholds it.

With the definition of PST-indistinguishability (Beimel
and Brafman 2018), a verifyable lower bound for strong
privacy was proposed. It states that all messages sent by
an agent as well as their order must be uniquely defined
by the public search tree. Other privacy definitions demand
that the identity of the other agents is not revealed (Faltings,

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Léauté, and Petcu 2008) or that agents can’t construct an up-
per bound on the number of objects of a type (Maliah, Shani,
and Stern 2018).

We propose a framework that allows us to verify whether
an execution of a multi-agent planning algorithm on a spe-
cific problem leaks private information. We then abstract
from the specific problem and use the same framework to
prove whether any exectution of a planning algorithm can
leak private information. To further visualize this, we apply
it to an A∗-based secure-MAFS algorithm and show that it
leaks private information.

Multi-Agent Planning
A multi-agent planning problem (Brafman and Domshlak
2008) is defined as a 4-tupel Π = (P, {Ai}Ni=1, I, G) where
P is a set of propositions, Ai is a set of actions of an agent
i, I the initial state and G a set of goal states. A part of the
propositions P pub ⊆ P are shared among all agents. Other
propositions P priv,i are private to a single agent i. The ex-
istence of a private variable is only known to the respective
agent and their value can only be affected by this agent’s
actions.

A global state s is defined as a valuation of all proposi-
tions p ∈ P . A state si of agent i is a valuation of all propo-
sitions P i = P pub ∪ P priv,i that affect this agent, that is
all public propositions and those private to agent i. A public
state spub only contains the valuations of the public vari-
ables. As a consequence, each public state describes a set of
global states that differ in the private states of the individual
agents.

We call an action public if the effect contains public vari-
ables. If the effect only contains private variables, the action
is private. From each private action, we can generate a pub-
lic projection apub, by stripping its precondition and effect
of all private propositions.

During the execution of a planning algorithmX , the plan-
ner generates a Planning Tree PTX(Π). The planning tree
is a directed graph which represents the paths and states
that the algorithm expanded during the search. Each node
of the graph corresponds to an expanded state; every edge
represents the occurence of an action. Since an algorithm
might expand states several times during its execution, sev-

eral nodes can refer to the same state.
We define a planning tree as a 6-tupel PT =
(N,E, i, V,D, d) where
• N = {n1, . . . n|N |} is a set of nodes.
• E = {e1, . . . e|E|} is a set of directed labeled edges. Each

edge ek = (npre, npost, lab) consists of a predecessor
node npre, a successor node npost and a label lab cor-
responding to the action labels of Π.

• i : N → [0, |N |−1] is the indexing function that assigns
a unique index to each node.

• V : N → 2P is the valuation function that assigns a
valuation over the propositions in Π to each node.

• D is a set of additional descriptions that may apply to a
state. For our purposes, it models additional information
that is transmitted during the application of a Multi-Agent
Planning algorithm. This might for example be the path
cost g(s) or the heuristic function h(s).

• d : N → D is the description function assigns the addi-
tional information to a node.
The planning tree is generated iteratively. At first, the

planning tree only consists of the initial state. In each step,
an new state is added to the tree by application of an action
to one of the currently expanded states. The index of the
nodes represents the order in which they were added to the
planning tree. The initial state always carries the index 0.

We use an additional structure that we call the Transmit-
ted Tree T. It models the content of all messages transmitted
between two agents. The transmitted tree has the same struc-
ture as the planning tree, with T = (NT , ET , iT , V,D, d)
and

NT ⊆ N
ET ⊆ T

The subsets NT and ET refer to the nodes and edges that
were transmitted as messages by the algorithm. The index-
ing function iT denotes the order in which the messages
were received. Since not necessarily all expanded nodes are
transmitted, the indices can vary from those of the planning
tree.

In a purely public problem, if all expanded states and ap-
plied actions are transmitted, the transmitted tree is identical
to the planning tree.

Strong Privacy
Brafman defined strong privacy as follows (Brafman 2015):
“A variable or a specific value of a variable is strongly pri-
vate if the other agents cannot deduce its existence from the
information available to them.”
Following this definition, it is not only the value of a private
variable or its function whithin the problem that must stay
unknown to the observer; even the fact that a private variable
exists and has any effect on the execution of the algorithm
must be obscured. In epistemic terms, we can rephrase this
definition:

Definition 1 A variable is strongly private if an observer
can’t distinguish between a world where this variable exists
and affects the execution of the algorithm, and one where it

doesn’t exist.

Initially, this may seem like a paradox - if the variable can’t
have a visible effect, what would be the point in using it?
However, the definition doesn’t say that the worlds are iden-
tical, but only that an observing agent can’t tell which world
it is in.

To illustrate this difference, consider three friends play-
ing a card game. They play a single round, which player A
wins. What the other players don’t know is that player A is
a skilled cheater. In a fair game, the chances of A winning
would have been 1

3 ; since they cheated, it is 1. Hence the out-
come of the game differs from one where A plays fair. But
from the perspective of B and C, the fact that they lost is in
line with the assumption that the game was fair. So the other
agents can’t distinguish between a world where A cheated
and one where they didn’t.

The epistemic formulation implies another important
property of strong privacy. The privacy of a value doesn’t
only depend on the algorithm but also on the observer. What
is indistinguishable for one observer might be distinguish-
able for another.

For this, imagine that the card game from above is played
with a non-standard deck of cards. Before the game, B
looked through the cards and found out that two cards of
each kind exist; player C didn’t. Now A - still a cheater - has
additional cards up their sleeve. They play out the third card
of a kind, which is not supposed to exist. B’s knowledge al-
lows them to deduce that A cheated. From the perspective
of C on the other hand the game still appears to be fair. So
regarding C, the private property that A cheats is preserved;
regarding B it isn’t.

This shows that in order to discuss privacy in a multi-
agent planning setting, we need to model the knowledge of
an agent. In a general case it can be assumed that every agent
knows what algorithm the others use and how that algorithm
works. So we need a way to transform a planning algorithm
into a knowledge model that we can check for consistency.
Only then we can decide whether the execution of the algo-
rithm and the exchanged messages are in accordance with
the assumption that no private variables exist.

For simplicity, we regard the case of two agents: a sender
S and a receiver R. The sending agent expands its private
search tree and sends messages toR whenever the algorithm
requires it. R acts as an honest, but curious agent, meaning
that they apply the algorithm in the predefined manner, but
try to deduce the private variables of S from the messages it
receives.

We assume that the deduction occurs after the planning
algorithm is complete, so that all messages are sent and the
knowledge of R is static. R has the following knowledge, as
illustrated in Figure 1:
• a set of actions

Apub
S : {(apub,prepub

a ,postpub
a }

that represents the public projections of the actions of S
• The transmitted tree TS which models the messages ex-

changed between the agents. It contains the state descrip-
tions and actions that were transmitted as part of the mes-
sages and are therefore known to be part of the planning

Figure 1: Schematic depiction of the deduction process.

tree.

• The algorithm model MS which models the behavior of
S’s algorithm.

Specifically, the knowledge model contains no private vari-
ables of S. If R can construct a planning tree which is a
possible product of the algorithm model and yields the mes-
sages that make up the transmitted tree, then S’s privacy is
preserved. However, if such a planning tree doesn’t exist,
R’s knowledge isn’t consistent with the actual execution of
the algorithm. If we have a high trust in the algorithm model,
the only possible reason for this inconsistency is that some
private variable existed during the actual execution.

Definition 2 We call the execution of a multi-agent planning
algorithm on a planning problem Π publicly self-sufficient,
if a planning tree exists, which doesn’t contradict the agent’s
algorithm model model or the transmitted tree and contains
only public variables.

Equivalently we could say that a problem is publicly self-
sufficient if the transmitted messages and the algorithm
model are consistent with the assumption that no private
variables exist.

Planning Logic

In order to prove whether tranmitted tree and algorihtm
model are consistent, we need to represent both within a
common framework, wich we call the Planning Logic. The
planning logic is a set of propositions and logic rules that are
able to model the execution of a multi-agent planning algo-
rithm. It it based on the concept of planning as satisfiability
(Kautz and Selman 1992). Since the valuations of the base
propositions of the planning problem change from state to
state, the logic needs a distinct set of base propositions for
each state. Additionally, we need to model the actions with
precondition and effect.

Definition 3 Let Π be a multi-agent planning problem and
ns the number of states we want to consider. We call LΠ the
planning logic induced by Π over the set of propositional

atoms

PLΠ
= {

psk ∀ p ∈ P ; k = 1, . . . , ns

ask,sj∀ a ∈ AS ; k, j = 1, . . . , ns

}

(1)

For a planning problem with |P | = np propositions and
|AS | = na actions and ns reachable states, this yields a
planning logic with |PLΠ | = np · ns + na · n2

s propositional
atoms.

Each state sk in Π is defined by the valuation of the propo-
sitions P . We define each state in LΠ using a set of proposi-
tions psk , with p ∈ P and k = 1, . . . , ns. A positive literal
psk means equivalently that the proposition p evaluates as
true in state sk.

An action a ∈ AS is defined with a set of propositions
ask,sj and two functions prea(sk) and applya(sk, sj). The
literal ask,sj denotes whether the action a was used in the
transition from predecessor state sk to successor state sj .
The function prea(sk) returns the precondition of a in the
propositions psk of the provided predecessor state. Simi-
larly, the function applya(sk, sj) returns the postcondition
of a in the propositions psj of the successor state and adds
an additional term psj ↔ psk for each base proposition p
not mentioned in the postcondition of a.

During or after the execution of an algorithm, the gener-
ated planning tree can be represented as a valuation of all
propositions of the planning logic. Let X be a planning al-
gorithm and Π a planning problem. We callL(·) the function
that transfers a planning tree or a transmitted tree into a logic
formular based on the planning logic.

Algorithm Models
In order to argue if the transmitted tree is compatible with
the applied algorithm, we need a way to model the algorithm
in the terms of the planning logic. To do this, we construct a
set of axioms that define what planning trees this algorithm
might produce.

Some axioms model properties that are common to all
planning algorithms, for example that each node in the plan-
ning tree must be connected. Others may represent proper-
ties which are unique to the algorithm. An algorithm that
searches the planning domain as a breadth-first search for
example would need an axiom that defines that all reachable
states are part of the planning tree.

In order to use the axioms we need to prove that they ac-
tually form a valid representation of the algorithm.

Definition 4 LetX be a multi-agent planning algorithm and
AX a set of axioms. AX is a sound axiomisation of X iff for
any planning problem Π

∀PT ∈ PTX(Π) : L(PT) � AX , (2)

where PTX(Π) is the set of all planning trees the algorithm
might generate from X on the problem Π.

This means that all planning trees generated from Π with X

are consistent with the axioms in AX . For a fully determin-
istic algorithm, PTX(Π) contains only one entry. In a ran-
domized algorithm, a repeated application of an algorithm
X on a problem Π can lead to different planning trees. In
that case, PTX(Π) contains all possible planning trees that
can be created that way.

The definition above guarantees that a set of axioms de-
scribes the algorithm. But it allows different axiomisations
of the same algorithm. In fact, an empty set of axioms would
be a sound axiomisation of any planning algorithm. This
can be used to depict different levels of knowledge that an
agent has. But in general, one would assume that an op-
posing agent has perfect knowledge about the applied algo-
rithm. Accordingly, the knowledge model has to be a com-
plete model of the applied algorithm.

Definition 5 Let X be a multi-agent planning algorithm
and AX an axiomisation of this algorithm. Furthermore, let
Π be a planning problem, and PTX(Π) the set of all plan-
ning trees that the algorithm might generate from X .
The axiomisation AX of X is complete iff for any planning
problem Π

∀PTΠ ∈ PTX(Π) : L(PTΠ) � AX and

∀PT ′Π /∈ PTX(Π) : L(PT ′Π) 2 AX

with PL(PT ′Π) = PL(PTΠ)

(3)

where PT ′Π is another planning tree based on the problem
Π.

In other words, it is impossible to construct a planning tree
PT ′Π based on Π that fulfills the axiomsAX , but differs from
those generated by X . This means that the axiomisation is a
perfect representation of the planning algorithm. For a deter-
ministic algorithm, a complete axiomisation is compatible
with exactly one planning tree: the one that is generated by
the planning algorithm on the public problem. For a random-
ized algorithm, the axioms are compatible with all planning
trees in PTX(Π).

Proving Public Self-Sufficiency
In Definition 2 we defined public self-sufficiency for one ex-
ecution of an algorithm on a specific problem. In order to
analyse whether an algorithm is publicly self-sufficent, we
have to prove whether there are situations in which the algo-
rithm can lead to a privacy leak.

Definition 6 An algorithm X is publicly self-sufficient iff
for any problem Π and any Execution E of the algorithm on
Π

L(TE
X(Π)) � AX (4)

where AX is a complete axiomisation of X and TE
X(Π)

the transmitted tree generated during the execution E of the
algorithm on problem Π.

Secure-MAFS
In the following, we will apply the discussed framework to
an A∗-based secure-MAFS algorithm (Brafman 2015). We

(0,5)
s1

(1,4)
s2

(2,3)
s3

(4,2)
(8,2)

s4

(3,6)
s5

(5,1)
s6

(6,0)
s7

Figure 2: Possible search tree of a MAFS problem. The
states are designated by their (g(s), h(s)) values. Note that
s4 is expanded twice with different paths costs. s7 is a goal
state.

will first construct an axiomisation of the A∗ algorithm and
show that it is complete. Then, we will show that the algo-
rithm is not publicly self-sufficient.

Axiomisation
The A∗ algorithm doesn’t expand the whole search tree. In-
stead, the algorithm keeps a list which contains all states
that are whithin one action from an already expanded state.
In every step it always expands the state sk with the low-
est expected path cost f(sk) from the list. If two states have
the same expected path cost, a tie-breaking mechanism is
applied. For our analysis we assume that the expected path
cost function is chosen in a way that doesn’t allow ties. This
can be achieved by incorporating the tie-breaking mecha-
nism into an expanded expected path cost function f̂(·).

We introduced a set of descriptors D to model the ad-
ditional information transmitted during the execution of a
MAP algorithm. In the case of secure-MAFS, this would be
the codomains Dg and Dh of the path cost function and the
heuristic function.

g : S → Dg

h : S → Dh

D := Dg × Dh

(5)

Since secure-MAFS is an informed search algorithm, and
since we want to assume full knowledge of the observer, we
have to assume that the functions g(·) and h(·) are known to
the observer.

An axiomisation AA∗ of the A∗ algorithm can be defined
as follows:

1. Action definition An action a can only be applied in a
state s if the action’s precondition is satisfied in s. Sim-
ilarly, the valuation of the successor state s′ must satisfy
the postcondition of a. All propositions not mentioned in
the postconditions must stay unchanged between s and s′.

as,s′ → prea(s) ∧ applya(s, s′) (6)

The functions prea(s) and applya(s, s′) are as defined
earlier. This axiom follows directly definition of an action
and therefore has to apply to all possible planning trees
and planning algorithms.

2. Reachability Every state except for the initial state is
added to the open list as successor of a previously ex-
panded state. As a consequence, the first time a state is

expanded, its predecessor state must have a lower index.

∀sk with k > 1 ∃a, sj with j < k : asj ,sk (7)

Since the initial state is the state with the smallest in-
dex, and the only one that doesn’t need a predecessor with
smaller index, this axiom impies that all states are reach-
able from the initial state s1.

3. Singleton States A state is only reexpanded if a shorter
path to it is found. So if two states have increasing ex-
pected path costs f , they have to differ in at least one
proposition.

∀sj , sk, j < k with f(sj) < f(sk) :

∃p : (psk ∧ ¬psj) ∨ (¬psk ∧ psj)
(8)

4. No Backward Edges Before a state sk is expanded, it has
to be added to the open list. This only happens if an action
from a previously expanded state leads to sk. So its pre-
decessor must have been expanded before and thus have
a lower index. As we defined above, all nodes in the plan-
ning tree are expansions of a state.

∀sk, sj , k ≤ j : ¬asj ,sk (9)

5. Expansion Order Before a state sk is expanded, a num-
ber of possible states is considered reachable (in the
open list). They can be seen as the successor states of all
currently applicable actions. Out of these states, sk must
have the lowest f -value.

∀sk, sj , with j < k :

∀a with prea(sj) and f(applya(sj)) < f(sk) :

∃sl with l < k : asj ,sl

(10)

The formular reads as follows: all states reachable from
sj whose expected path cost is lower than that of sk must
be expanded before sk.

6. Shortest Path If two actions are both applicable in differ-
ent states, and both would expand a new state with identi-
cal valuations, only the one with the lower expected path
cost is applied.

∀sj , sk, sl with j, k < l and

aA, aB with preaA(sj) ∧ preaB (sk) and
applyaA(sj) = applyaB (sk) = V (sl) and

f
(
applyaA(sj)

)
< f

(
applyaB (sk)

)
:

¬aBsk,sl

(11)

This also implies that each node has only one predecessor
with lower index. In combination with axiom 4, which
excludes any predecessor with higher index, each node
can only have exactly one preceding action.

7. Path Cost and Heuristic Value The transmitted path- and
heuristic cost gs, hs that are transmitted in the messages
must align with the values computed by the observer.

∀sk : h(sk) = hsk , g(sk) = gsk (12)

While the last axiom may seem obvious, it illustrates an im-
portant rule concerning the properties of a privacy preserv-
ing algorithm: A MAP algorithm can only preserve privacy
if the functions g(·) and h(·) only depend on public vari-
ables.

We won’t formally prove that the axiomisation is sound
according to definition 4. In the following, we will assume
that definition 4 holds and based on this assumption prove
that AA∗ is a complete axiomisation according to definition
5.

Consider the set PTax(Π) of all planning trees based on
problem Π which satisfy the axioms AA∗ . We assume that
the axiomisation AA∗ is sound, so PTax(Π) must contain
PTA∗(Π). Since secure-MAFS is a deterministic algorithm,
the set PTA∗(Π) contains only one entry PTΠ.

PTA∗(Π) = {PTΠ} ⊆ PTax(Π)

If we can prove that PTax(Π) is also singular, so the
axiomisation is only consistent with exactly one planning
tree PTΠ for any problem Π, then PTA∗(Π) = PTax(Π)
and the axiomisation is complete. We will prove this by
induction over the nodes of the planning tree.

Lemma 1: Uniqueness
A planning tree PTΠ that fulfills the axiomisation AA∗ is
uniquely defined.
Induction start: s1

The valuation of the initial state s1 is defined by the problem
Π.
Induction hypothesis:
The partial tree PT k−1

Π defined by the states s1, . . . , sk−1

and all applied actions between them is uniquely defined.
Induction step: sk
Let Spre

k = {s1, . . . , sk−1} be the set of all states in PT k−1
Π .

Per induction hypothesis, all those states and their valuations
are uniquely defined.

Axiom 2 defines that sk must be the successor of another
state sj via an action ask . Due to axiom 4, the preceding
state must have a lower index, so we know that sj ∈ Spre

k .
Consequently, sk must be reachable from a state in Spre

k by
application of one action. We call Spot

k = s̄1, . . . , s̄n the
set of potential states reachable from Spre

k in this manner.
We sort the potential states by f -value, with f(s̄1) < · · · <
f(s̄n). This is possible because we defined f(·) to be an
injective function by including the tie-breaking function in
it.

Consider a state s̄i ∈ Spre
k as candidate for sk. Axiom 5

demands that all reachable states with lower f -value - in this
case the states s̄1, . . . , s̄i−1 - have a lower index. All states
with an index lower than k are in the set Spre

k . It follows that
{s̄1, . . . , s̄i−1} ⊆ Spre

k .
All states in Spre

k are already part of the partial plan-
ning tree PT k−1

Π . Consequently, sk must be the first entry
among Spot

k (as sorted by f -value) that is not already part
of PT k−1

Π . This uniquely defines both sk and its preceding
action ask .

Axiom 6 implies that each state has only one preceding
action. Therefore the new partial tree PT k

Π generated by

āb̄ē
s0

ab̄ē s1 ab̄e s5

ābēc̄d̄
s2

cd̄ s3

c̄d s4

ābe
cd̄ s6

c̄d s7
spub2 spub6

Figure 3: Public and private search tree as processed by
secure-MAFS. The propositions a, b and e are public, c and
d are private.

adding sk and ask to PT k−1
Π doesn’t allow the addition of

any further actions between the states. Therefore, all states
and actions of PT k

Π are uniquely defined. �
It follows from the lemma that PTA∗(Π) = PTax(Π).

Therefore, AA∗ is a complete axiomisation of the A∗ algo-
rithm.

Public Self-Sufficiency
The secure-MAFS algorithm only sends valuations of states
in the messages, not which actions were used to get to these
states. So at the end of the execution, the transmitted graph
consists of an unconnected set of states.

Secure-MAFS is an extension of MAFS that was devel-
oped to give better privacy guarantees. Instead of just keep-
ing a list of open states it maintains a list of the public pro-
jections of these states. Each of these open public states has
two lists attached: a list of open private states that have this
same public projection and a list of public states s′ which
are successors of any state in the first list. Figure 3 illus-
trates this: The private states s3, s4, s5 and s7, s8 are merged
to two single public states t1 and t2. As t2 is the successor
of t1, the open list of this problem would look as follows:

public states: āb̄ē ab̄ē ābē ab̄e ābe

private states: c̄d̄ c̄d̄ c̄d̄
cd̄
c̄d

c̄d̄ cd̄
c̄d

successors: ab̄ē
ābē

ab̄e ābe - -

Instead of broadcasting every state to the other agents, the
secure-MAFS algorithm adds new private states to the list
and only sends a new message when a new public state is
added to the open list.

As discussed earlier, an informed search algorithm can
only be privacy preserving if the path cost g(·) and the
heuristic h(·) only depend on public properties; therefore we
will assume this for this analysis.

To prove or disprove strong privacy, we will go through
the axioms and show whether they can stand in conflict to the
transmitted graph. In order to keep the clarity of the prove,
we will only consider the interactions of each axiom with the
previous axioms. We call sk a global state with public and
private propositions, spriv

k a purely private state that is not
transmitted during the application of MAFS and s.k the pub-

lic projection of sk. Equivalently, a. is the public projection
of an action a that is transmitted to the other agents.

1. Action Definition

a.s.j ,s.k → prea.(s.) ∧ applya.(s.k, s
.
j)

Since the transmitted graph initially contains no actions,
this axiom cannot stand in contrast do it.

2. Reachability

∀s.k with k > 1 ∃a., s.j with j < k : a.s.j ,s.k (13)

Every state except the initial state has to be the successor
of another state with lower index. In combination with ax-
iom 1 this means that the public projection s.k of a state sk
needs a public predecessor s.j , j < k and a public action
a. such that pre.a(s.j) and applya.(s.j , s

.
k) are true.

The last action that leads to a transmitted state is always
a public action. So the public projection of the postcondi-
tions of that action are satisfied in sk.

∀sk ∃a : posta.(s.k)

Before every public action can come an arbitrary number
of private actions. By definition, a private action only has
private variables in its effect. Accordingly, between two
transmitted states sj and sk are a number of untransmitted
private states (s̄priv

1 , . . . , s̄priv
n) which all have the same

public projection as the public predecessor sj . Since the
public projection of the public predecessor is the same as
the projection of the actual predecessor s.j = s̄priv.

n , and
the public projection of the precondition pre.a is applica-
ble in s̄priv

n , it must also be applicable in sj .

∀sk ∃a, sj : prea.(s.j) ∧ posta.(s.k)

Since the only thing that affects the public projection of
the states between sj and sk is the public action a, we
can conlude that all public propositions not mentioned in
posta. stay the same.

∀sk ∃a, sj : prea.(s.j) ∧ applya.(s.j , s
.
k)

In conclusion, the single root state axiom is also satisfied
in any execution of secure-MAFS.

3. Singleton States

∀sk, sj with k < j, f(sk) ≤ f(sj) :

∃p ∈ P pub : (psk ∧ ¬psj) ∨ (¬psk ∧ psj)

Whenever secure-MAFS extends a state, it checks
whether that another state with the same public projection
was already transmitted. If so, the state is not transmitted
to the other agents. This guarantees that no public state
is transmitted twice and therefore that this axiom always
holds.

4. No Backward Actions

∀sk, sj , k ≤ j : ¬asj ,sk (14)

All actions implied by axiom 2 lead from a previously
expanded state to one that is expanded later on. Therefore,
this axiom is always satisfied.

ab(c)
s1

āb(c)
s2

ab̄(c)
s3

ab
s1

āb
s2

ab̄
s3

a :
〈 >, ā

〉

b :
〈
c̄, b̄

〉
a. :

〈 >, ā
〉

b .
:
〈
>, b̄

〉

Figure 4: Left: global states; right: public projection of the
same states. In the public projection, the state (ab̄) appears
to be reachable, while in fact it is not.

5. Expansion Order

∀ public sj , sk, with j < k :

∀a with prea.(s.j) and f(applya.(sj)) < f(sk) :

∃ public sl with l < k : asj ,sl

(15)

Consider a situation as shown in figure 4. While s.3 ap-
pears to be reachable in the public projection of the prob-
lem, it is in fact not because the private variable c prohibits
it.
If f(s3) < f(s2), the axiom requires s.3 to be expanded
before s.2. But since s3 can’t be expanded, this situation
leads to a violation of axiom 5.

6. Shortest Path

∀sj , sk, sl with j, k < l and

aA, aB with preaA.(s.j) ∧ preaB.(s.k) and

applyaA.(s.j) = applyaB.(s.k) = V (s.l) and

f
(
applyaA.(s.j)

)
< f

(
applyaB.(s.k)

)
:

¬aBsk,sl

(16)

The same reasoning as for axiom 5 applies. If the public
projection aA. is applicable, but the actual action aA is
not, then aBsk,sl is the only path that connects sl to the
rest of the planning tree. Consequently, axiom 6 is not
guaranteed to hold.

7. Path Cost and Heuristic Value

∀sk : h
(
V (sk)

)
= hsk , g

(
V (sk)

)
= gsk (17)

Since we assumed that the path cost and heuristic value
depend only on public propositions, this is by construction
always fulfilled.

Axiom 5 and 6 aren’t guaranteed to hold. This means that
secure-MAFS is not a public self-sufficient algorithm.

Logistics Example
We will illustrate this with an example from the logistics do-
main. A truck needs to deliver two packages a and b from
their respective locations A and B to a third location X. The
problem has the following public propositions
A : truck is at location A
B : truck is at location B
X : truck is at location X
a : package a is loaded in the truck

A X

B

a

b

aA

daX

abB

dabB

dadbX

Figure 5: Logistics example. Left: the different locations and
paths; right: public search tree.

b : packabge b is loaded in the truck
da : package a is delivered
db : package b is delivered
Figure 5 shows the paths between the locations and the cor-
responding public search tree of the truck. To keep the ex-
ample readable we omit negative propositions in all state de-
scriptions. The truck has the following public actions:
drive(L1, L2) : 〈L1 | L̄1L2〉
pick up(L, p) : 〈Lp̄d̄p | p〉
deliver(p) : 〈Xp | p̄dp〉

The placeholders L1, L2, L ∈ {A, B} describe locations and
p ∈ {a, b} describes a package. The planning logic LΠ. of
the public problem Π. consists of the propositions

PLΠ. = {
Ask , Bsk , Xsk , ask , bsk , d

a
sk
, dbsk ,

drL1L2
sjsk

, pLp
sjsk

, dpsjsk ,

k, j = 1, . . . , |S|; p = a, b; L,L1, L2 = A,B,X}

(18)

The public search tree as shown in figure 5 can be tran-
scribed as the following logic formular

as1As1 · das2
Xs2 · as3bs3Bs3 · das4

bs4Bs4 · das5
dbs5

Xs5

(19)
again we omit all negative propositions for better readabil-

ity.
The amount of fuel in the tank of the truck is considered

private and has the following possible states:
tf : tank is full
th : tank is half full
te : tank is empty
As it happens, driving between locations A and B uses up a
full tank, while between A and X or B and X only uses half
a tank. The truck can only refuel at location X. The private
actions of the truck are as follows:
drive l(L1, L2) : 〈L1tf | L̄1L2te〉
drive s(L1, L2) : 〈L1t̄e | L̄1L2(tf . th)(th . te)〉
refuel : 〈X | tf〉

The action drive l denotes the long road between A and B,
drive s denotes the short road from or to location X.

We apply the secure-MAFS algorithm to this problem. We
define the path cost function g(s) as the number of drive
actions necessary to reach a state. As heuristic function h(s)
we use the optimal heuristic h∗. The initial state of the truck
is (Aath): The truck is at location A with only package a and
a half empty tank.

Figure 5 shows two different paths to the goal state. The
upper path via state (daX) has a path cost of 3, the lower path

via the state (abB) a cost of 2. Since we assume a perfect
heuristic h∗, those are also the f -values of the mentioned
public states. Expanding the cheaper, lower path would re-
quire the agent to first expand the action drive l(A, B). Be-
cause the agent has only half a tank of gas, this action is
not applicable in the initial state. The agent can only expand
the more expensive upper path and transmit the correspond-
ing message (daX). This violates axiom 5, because the state
(abB) has a lower f -value. This allows the observer to de-
duce that some private variable must exist that doesn’t allow
the expansion of the lower path.

Conclusions
Optimality vs. Privacy
The problem of secure-MAFS we presented is a general one:
If an observer has perfect knowledge of the applied algo-
rithm, it can generate the public search tree of the sender
and find the optimal path in it. If an action in that path is
not applicable because of a private variable, the transmitted
optimal path differs from the expected one. This allows the
observer to deduce that private variables exist and affect the
execution of the algorithm.

It was shown before that a multi-agent planning algorithm
can’t simultaneously be strongly private, optimal and ef-
ficient (Tožička, Štolba, and Komenda 2017). We can use
this knowledge and trade in some optimality or efficiency
for improved privacy. A private, but non-optimal variant of
secure-MAFS would expand the search tree using a random
walk. Instead of expanding the node with the lowest f -value,
it would choose a random node from the open list. The
axiomisation ArMAFS would consist of axioms 1-4 and 7
from above; the axioms Expansion Order and Shortest Path
would become obsolete. The axioms of rMAFS describe a
set of plannig trees, all of which could be generated by the
algorithm. The observer can’t distinguish whether an action
is omitted because it isn’t applicable or just because a differ-
ent action was randomly chosen.

Comparison to β-indistinguishability
We will compare our privacy definition to PST-
indistinguishability (Beimel and Brafman 2018). PST-
indistinguishability claims that the messages R receives
during the application of a MAP algorithm are uniquely
defined by the public search tree of the problem and the
initial state of R.
In a more general setting, β-indistinguishability considers
not the public search tree but the output of a leakage func-
tion β(Π). The exact definition of β-indistinguishability as
given in (Beimel and Brafman 2018) is as follows:

Definition 7 Let β : {0, 1}∗ → {0, 1}∗ be a (leak-
age) function. We say that a deterministic algorithm
is β-indistinguishable if there exists a simulator Sim
such that for every set T of agents and for every input
x = (x1, ..., xn) the view of T is the same as the output
of the simulator that is given (xi)i∈T and β(x), i.e.,
Sim(T, (xi)i∈T , β(x)) = viewT (x).

Instead of working with the public search tree, we define
a different construction that we will call the transmitted
graph. The transmitted graph consists of the states and
actions that are transmitted by the algorithm. Since a privacy
preserving algorithm only transmits the public projections
of actions and states, the transmitted graph consists of a
subset of the states and actions in the public search tree.
We call an algorithm public self-sufficient if the transmitted
graph is consistent with the model a foreign agent has of the
algorithm.

If a receiving agentR has perfect knowledge of the sender
i.e. if the model MS is an exact representation of the ap-
plied algorithm including possible heuristics, we can regard
the model as a simulator Sim from definition 7. The leakage
function β is then only given by the transmitted messages.
An unsatisfiable model and transmitted graph is then equiva-
lent with the simulator being inconsistent with the transmit-
ted messages.

Further Work
Further work is needed to evaluate the implications of pub-
lic self-sufficiency. New algorithms are needed that comply
to the stricter rules of public self-sufficiency. One interest-
ing approach might be to check before transmitting a mes-
sage, whether this message might compromise privacy and
to adjust it accordingly or expand a different path. Another
promising path is that of randomized algorithms. Especially
in a larger problem, they might be vunerable to a stochastic
approach. It is also important dicuss further, when we want
to trade optimality for privacy, and in what domains more
relaxed concepts of privacy are sufficent.

References
Beimel, A., and Brafman, R. 2018. Privacy preserving
multi-agent planning with provable guarantees. ArXiv.
Brafman, R., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. Amerian
Association for Artificial Intelligence.
Brafman, R. 2015. A privacy preserving algorithm for multi-
agent planning and search. International Joint Conference
on Artificial Intelligence.
Faltings, B.; Léauté, T.; and Petcu, A. 2008. Privacy guar-
antees through distributed constraint satisfaction. 350–358.
Kautz, H., and Selman, B. 1992. Planning as satisfiability.
359–363.
Maliah, S.; Shani, G.; and Stern, R. 2018. Action de-
pendencies in privacy-preserving multi-agent planning. Au-
tonomous Agents and Multi-Agent Systems 32(6):779–821.
Tožička, J.; Štolba, M.; and Komenda, A. 2017. The
limits of strong privacy preserving multi-agent planning.
In Twenty-Seventh International Conference on Automated
Planning and Scheduling.

