
A Factored Approach To Solving Dec-POMDPs

Eliran Abdoo, Ronen I Brafman, Guy Shani
Ben-Gurion University, Israel

eliranb,brafman,shanigu@bgu.ac.il

Abstract

Dec-POMDPs model planning problems under uncertainty
and partial observability for a distributed team of cooperat-
ing agents planning together but executing their plans in a
distributed manner. This problem is very challenging com-
putationally (NEXP-Time Complete) and consequently, exact
methods have difficulty scaling up. In this paper we present
a heuristic approach for solving certain instances of Factored
Dec-POMDP. Our approach reduces the joint planning prob-
lem to multiple single agent POMDP planning problems.
First, we solve a centralized version of the Dec-POMDP,
which we call the team problem, where agents have a shared
belief state. Then, each agent individually plans to execute
its part of the team plan. Finally, the different solutions
are aligned to achieve synchronization. Using this approach
we are able to solve larger Dec-POMDP problems, limited
mainly by the abilities of the underlying POMDP solver.

1 Introduction
Decentralized Partially Observable Markov Decision Pro-
cesses (Dec-POMDPs) are a popular model for planning in
stochastic environments under uncertainty with partial ob-
servability by a distributed team of agents (Oliehoek and
Amato 2016). In this model, a team of agents attempts to
maximize the team’s cumulative reward where each agent
has only partial information about the state of the system
during execution. The team can plan together centrally prior
to acting, but during execution each agent is aware of its own
observations only. Communication is possible only through
explicit communication actions, if these are available.

To achieve their common goal agents must coordinate
their actions in two ways: First, as in single agent problems,
actions must be coordinated sequentially. That is, current ac-
tions must help steer the system later towards states in which
greater reward will be possible. For example, to be rewarded
for shipping a product, it must first be assembled. Second,
agents may need to coordinate their simultaneous actions
because their effects are dependent, e.g., a heavy box can
only be pushed if two agents push it simultaneously.

Our focus is on centralized off-line planning for dis-
tributed execution. That is, offline, a solver with access to the
complete model must generate a policy for each agent. An
agent’s policy specifies which action it executes as a function

of the agent’s history of actions and observations. Such poli-
cies can be represented by a policy graph where nodes are la-
beled by actions, and edges are labeled by observations. On-
line, each agent executes its own policy independently of the
other agents. The challenge is to generate policies that pro-
vide sufficient coordination, even though each agent makes
different observations at run-time. Thus, agents’ beliefs over
which states are possible are typically different.

Dec-POMDPs are notoriously hard to solve – they are
NEXP-Time hard (Bernstein, Zilberstein, and Immerman
2013), implying that only the smallest toy problems are
optimally solvable. However, many approximate methods
for solving Dec-POMDPs have been proposed, with steady
progress. Some of these methods generate solutions with
bounds on their optimality (Oliehoek et al. 2013; Seuken
and Zilberstein 2007; Oliehoek, Kooij, and Vlassis 2008),
and some are heuristic in nature (Nair et al. 2003). However,
current methods typically do not scale to state spaces with
more than a few hundreds of states.

In this paper we describe a heuristic approach for solv-
ing Dec-POMDPs that scales to much larger state spaces.
The key idea is to solve a Dec-POMDP by solving multiple
POMDPs. First, we solve the team POMDP, a POMDP in
which every observation by one agent is immediately avail-
able to the other agents. Hence, all agents have the same
belief state. The solution of the team POMDP can be repre-
sented by a policy graph — the team policy graph. It pro-
vides us with a skeleton for the solution of the Dec-POMDP,
specifying what each agent needs to provide for the team.
Naturally, this policy is not executable by the agents, be-
cause agents cannot condition their actions on the observa-
tions of other agents in the real world.

Hence, in the next stage, we let each agent solve a
POMDP in which it is rewarded for behaving following the
specification in the team policy. This leads to the generation
of a policy tree for each agent. These policy trees are often
not well synchronized. In the last step we synchronize the
policy trees by delaying the actions of agents to improve the
probability of good coordination.

We implemented our algorithm and tested it on several
configurations of a benchmark problem: Collaborative Box-
Pushing which is a variation of the Cooperative Box Pushing

problem. We show that the algorithm manages to scale well
beyond current Dec-POMDP solvers. One of the main prop-
erties of the domain, is that agents policies are only loosely
coupled. That is, the need for actions that affect state com-
ponents that are relevant to all agent, is sparse. That spar-
sity allows for each agent to independently construct a plan
that consists mostly of its own private actions without requir-
ing it to consider the other agents’ behavior. This allows us
to achieve good decentralized policies even when achieving
the goal requires many steps, compared to planning directly
over the Dec-POMDP model.

2 Background
We now provide needed background on POMDPs, Dec-
POMDPs, their factored representation, and policies. We
also introduce the concept of private and public variables
and actions in Dec-POMDPs.

2.1 POMDPs
A POMDP is a model for single-agent sequential deci-
sion making under uncertainty and partial observability. For-
mally, it is a tuple P = 〈S,A, T,R,Ω, O, γ, h, b0〉, where:
• S is the set of states. The future is independent of the past,

given the current state.
• A is the set of actions. An action may modify the state

and/or provide information about the current state.
• T : S × A →

∏
(S) is the state transition function.

T (s, a, s′) is the probability of transitioning to s′ when
applying a in s.

• R : S × A × S → R is the immediate reward function.
R(s, a, s′) is the reward obtained after performing a in s
and reaching s′.

• Ω is the set of observations. An observation is obtained
by the agent following an action, and provides some in-
formation about the world.

• O : S × A →
∏

(Ω) is the observation function, speci-
fying the likelihood of sensing a specific observation fol-
lowing an action. O(s′, a, o) is the probability of observ-
ing o ∈ Ω when performing a and reaching s′.

• γ ∈ (0, 1) is the discount factor, quantifying the relative
importance of immediate rewards vs. future rewards.

• h is the planning horizon — the amount of actions that an
agent executes before terminating. The horizon may be
infinite.

• b0 ∈
∏

(S) is a distribution over S specifying the proba-
bility distribution over the initial state.
For ease of representation, we assume that agent actions

are either sensing actions or non-sensing actions. An agent
that applies a non-sensing action receives the observation
null-obs. In addition, we also assume that every action has
an effect that we consider as the successful outcome, while
all other effects are considered failures. We later explain how
this assumption can be omitted in the relevant parts.

Often, the state space S is structured, i.e., it consists of
assignments to some set of variablesX1, . . . Xk, and the ob-
servation space Ω is also structured, consisting of a set of

observation variables W1, . . . ,Wd. Thus, S = Dom(X1)×
· · · × Dom(Xk) and Ω = Dom(W1) × · · · × Dom(Wd).
In that case, τ , O, and R can be represented compactly
by, e.g., a dynamic Bayesian network (Boutilier, Dean, and
Hanks 1999). Formats such as RDDL (Sanner 2011) and
POMDPX (POM 2014) exploit factored representations to
specify POMDPs compactly.

Example 1. Consider a simple Box-Pushing in a 2 cell grid.
The left cell is marked by L and the right cell by R. The agent
begins in the left cell. There is a single box, that starts in the
right cell. The agent can either move, sense its current cell
or push a box from its current cell. Both move and push can
be done in any direction — left and right. The agent’s goal
is to push the box to the right cell. The state is composed of
2 variables: the location of the agent and the location of the
box. Each variable can take one of two values: L or R. The
sense action returns an observation telling whether there’s
a box in the agent’s cell, while the move and push actions
are non-sensing actions always returning null-obs. The push
action has a success probability of 0.8.

A solution to a POMDP can be formed as a policy, assign-
ing to each history of actions and observation (AO-history)
the next action to execute. Such a policy is often represented
using a policy tree or, more generally, a policy graph (also
called a finite-state controller).

A policy graph G = (V,E) is a directed simple graph,
in which each vertex is associated with an action, and each
edge is associated with an observation. For every edge v ∈
V and every observation o ∈ Ω exactly one edge emanates
from v with the label o. The graph has a single root which
acts as its entry point. EveryAO-history h can be associated
with some path from the root to some vertex v, and the action
labelling v is the action that the policy associates with h.

Finally, using a policy graph to direct the agent on the
problem produces a trace – an execution trajectory. A
trace T of length l is a sequence of quintuplets ei =
(si, ai, s

′
i, oi, ri), namely steps, that occurred during a possi-

ble policy execution where: si is a state in step i and s0 is the
initial state; ai is the action taken in step i; s′i is the result of
applying ai in si; oi is the observation received after taking
ai and reaching s′i; and is the reward received for taking the
ai in si and reaching s′i. Clearly, ∀i such that 0 ≤ i ≤ l− 1,
we have s′i = si+1.

2.2 Dec-POMDP
A Dec-POMDP models problems where there are n >
1 acting agents.. These agents are part of a team, shar-
ing the same reward, but they act in a distributed man-
ner, sensing different observations. Thus, their informa-
tion state is often different. Formally, a Dec-POMDP for
n agents is a tuple P = (S,A =

⋃n
i=1 {Ai}, T,R,Ω =⋃n

i=1 {Ωi}, O, γ, h, {Ii}
n
i=1), where:

• S, γ, h, b0 are defined as in a POMDP.

• Ai is the set of actions available to agent i. We assume
that Ai contains a special no-op action, which does not
change the state of the world, and does not provide any
informative observation. A = A1 × A2 × .. × An is the

set of joint actions. On every step each agent i chooses
an action ai ∈ Ai to execute, and all agents execute their
actions jointly. 〈a1, ..., an〉 is known as a joint action. We
often treat the single-agent action ai as a joint-action, with
the understanding that it refers to the joint-action 〈no-
op,. . . , ai, . . . ,no-op〉

• T : S×A→
∏

(S) is the transition function. Transitions
are specified for joint actions, that is, T (s, 〈a1, ..., an〉, s′)
is the probability of transitioning from state s to state s′
when each agent i executes action ai.

• R : S × A× S → R is the reward function. Rewards are
also specified over joint actions.

• Ω = Ω1 × Ω2 × .. × Ωn is the set of joint observations.
Each Ωi contains a special null-obs observation received
when applying a non-sensing action.

• O : S × A →
∏
i=1..n(Ωi) is the obser-

vation function, specified over joint actions.
O(s′, 〈a1, ..., an〉, 〈o1, ..., on〉) is the probability that
when all agents execute 〈a1, ..., an〉 jointly and reach s′,
each agent i observes oi.

• γ is the discount factor.
• h is the horizon.
• b0 ∈

∏
(S) is a distribution over S specifying the proba-

bility that each agent begin its execution in each state. In
principle, different agents may have different initial belief
states, but we make the (common) assumption that the ini-
tial belief state is identical.

Example 2. We extend the previous example to a Dec-
POMDP by adding an agent at the right cell and a second
box that starts in the left cell. The agents are denoted by
Agent1 and Agent2 and the boxes by Box1, and Box2. Box1
must reach the left cell, and Box2 must reach the right cell.

As in the case of POMDPs, Dec-POMDPs can also be
represented in a factored manner (Oliehoek et al. 2008), al-
though most work to date uses the flat-state representation.
We add the notion of observation variables, which capture
the observation value each agent obtains following an ac-
tion. Each observation variable is denoted by ωi which takes
values in Ωi, and represents the observation of agent i.
Example 3. In our example, the state is now composed of 4
state variables: the location of each box – (XB1, XB2) – and
the location of each agent – (XA1, XA2). In addition, there
are two observation variables – (ω1, ω2).

An important element of a factored specification of Dec-
POMDPs is a compact formalism for specifying joint-
actions. If there are |A| actions in the domain, then, in prin-
ciple, there are O(|A|n) possible joint actions. Specifying
all joint actions explicitly is unrealistic for large domains.

In many problems of interest we may expect that most
actions will not interact with each other. A pair of actions
a ∈ Ai, a′ ∈ Aj is said to be non interacting, if their ef-
fects when applied jointly (in the same joint action) is the
union of their effects when applied separately. Thus, our
specification language focuses on specifying the effects of
single-agent actions and specific combinations of single-
agent actions that interact with each other, which we refer

to as collaborative actions (Bazinin and Shani 2018). For
a more detailed discussion of the compact specification of
joint-actions, see (Shekhar and Brafman 2020).

Example 4. We alter our example further by introducing a
collaborative action. To do so, we need to convert one of the
boxes to a ”heavy” box - a box that requires both agents to
push it. We will convert Box1 to such box. Both agents now
have also the option to apply a collaborative-push action in
any specified direction. If both agents apply that action to
push Box1 while in the same cell with it, the box will transit.

Finally, a solution to a Dec-POMDP is a set of policies
ρi, one for each agent. It maps action-observation sequences
of this agent to actions in Ai. As in POMDPs, these policies
can be specified using a policy graph for each agent. The
policy graph for agent i associates nodes with actions in Ai
and edges with observations in Ωi.

2.3 Public and Private Actions and Variables
We find it useful to define the concept of public and pri-
vate variables and actions. State variables can influence or
be influenced by an agent’s action. State variables that are
influenced by several agents are called public and state vari-
ables that are influenced only by a single agent are private.
The concept of private and public (or local and global) vari-
ables (Brafman and Domshlak 2006) has been used exten-
sively in work on privacy-preserving multi-agent planning
(e.g., (Nissim and Brafman 2014; Maliah, Brafman, and
Shani 2017)) and, more recently, in work on solving qual-
itative variants of Dec-POMDPs (Brafman, Shani, and Zil-
berstein 2013; Shekhar, Brafman, and Shani 2019).

We now explain how we extend these concepts to factored
Dec-POMDPs. These definitions are based on the notions of
preconditions and effects, as used in classical planning. Let
a ∈ Ai be a non-sensing action of agent i. We identify a
with the joint action (no-op, . . . , a, . . . , no-op). We say that
a state variable Xi is an effect of a if there is some state s
for which there is a positive probability that the value Xi

changes following a. We denote the effects of a by eff (a).
We say that state variable Xi is an influencer of a if a

behaves differently for different values of Xi. That is, if
there are two states s1, s2 that differ only in the value of
Xi such that R(s1, a, s

′) 6= R(s2, a, s
′), or T (s1, a, s

′) 6=
T (s2, a, s

′) for some state s′, or O(s1, a, o) 6= O(s2, a, o)
for some observation o. We denote influencers of a by
inf(a). We refer to the union of the influencers and effects
of a as the relevant variables of a, denoted rel(a).

If a is a sensing action, we define inf(a) similarly, i.e.,
Xi ∈ inf(a) if there are two states s1, s2 that differ only in
the value of Xi such that the distribution over the values of
the observation variable of the agent performing a at s1 and
at s2 are different.

For collaborative actions, the definitions remain the same
except that now we identify a with the the joint-action that
is composed of the actions of the collaborating agents, and
no-ops for the rest.

We say that a variable Xi is relevant to agent j, if Xi is
relevant to some some a ∈ Aj . Finally, Xi is public if it is
relevant to more than one agent, and it is private otherwise.

Example 5. In our running example,XB1 andXB2 are both
public variables, as they are relevant of both agents’ push ac-
tions. XA1, XA2 are private variables of agent 1 and agent 2
respectively, as they are the relevant only to each respective
agent’s move action. The same holds for ω1 and ω2 with re-
spect to the sense actions. Furthermore, the move and sense
actions are private actions, while the push actions are public.

3 FDMAP - Factorized Distributed MAP
Given the input factored Dec-POMDP problem P , we first
generate the team POMDP Pteam. We solve Pteam using
an off-the-shelf POMDP solver – we used SARSOP (Kurni-
awati, Hsu, and Lee 2008) – and output the team policy.

Next, we then use the team policy to produce traces,
which are simulations of the team policy over the team prob-
lem. Using the traces, we project the team problem with re-
spect to each agent, as follows: First, for each agent, we ex-
tract from the traces a set of public actions and the context in
which they were applied, which we call a contexted actions.
The context captures the conditions under which the action
achieves the same effects as in the trace. Then, we associate
a reward with each contexted action. The reward associated
with the contexted action is designed so that agents will be
rewarded for acting in a manner similar to their behavior in
the team solution.

Using these contexted actions and their rewards, together
with the factored Dec-POMDP, we generate one single-
agent problem for each agent. The dynamics of each single-
agent problem is similar to that of the Dec-POMDP, except
that some variables are projected away.

Finally, we process the single-agent policies and align
them to try and ensure that actions are properly synchro-
nized when they are executed in a decentralized manner. In
the rest of this section we explain the steps that follow the
generation of the team solution in more detail.

3.1 Producing the Traces
Having generated the team problem, Pteam, we solve it and
produce the traces, to capture the possible scenarios of the
problem. We must specify three hyper-parameters: a pair of
confidence parameters α, β and a precision parameter εteam.
We generate an εteam-optimal solution to Pteam using an
off-the-shelf POMDP solver, and then simulate that solution
to produce nt traces. We want the the empirical distribution
of the initial states observed in the traces and the distribution
given by the initial belief state to be close. To do so, we
generate sufficiently many traces so that the probability of
the KL-Divergence to be greater than β, is less than α.

To pick the number of traces we use a result on concen-
traion bounds for multinomial distribution from (Agrawal
2019), since the initial belief state b0 is a multinomial dis-
tribtuion. We denote by T0 the sampled distribution, and by
k the number of initial states, namely the support set of b0.
Using the theorem, for every nt > k−1

β we have:

Pr(KL(T0||b0) ≥ β) ≤ e−nt·β
(
eβnt
k − 1

)k−1

Example 6. In our example, solving the team problem
yields the following policy graph. Agent1 starts by pushing
Box2 to the right, and then senses whether it had succeeded.
It then moves left to assist Agent2 to push the heavy box,
Box1, to the right, and again senses to verify its success.

Next, we use the policy graph to produce the traces.
Different traces will differ by the number of pushes the
agents performs until success. Table 1 shows two possible
traces. Recall that the state is composed of 4 state variables:
(XA1, XA2, XB1, XB2), where each variables can take val-
ues in (L, R). The actions’ names will be denoted by the
action name (M for move, P for push, CP for collaborative
push and S for sense), followed by the direction for move
and push actions (L, R), and sub-scripted by the target box
for sense and push actions (B1, B2). We also denote the
null-obs by φ

XA1 XA2 XB1 XB2 a1 a2 ω1 ω2

1 L R R L PRB2 IDLE φ φ

2 L R R R SB2 IDLE φ no
3 L R R R MR IDLE φ φ

4 R R R R CPLB1 CPLB1 φ φ

5 R R L R SB1 IDLE no φ

1 L R R L PRB2 IDLE φ φ

2 L R R R SB2 IDLE φ no
3 L R R R MR IDLE φ φ

4 R R R R CPLB1 CPLB1 φ φ

5 R R R R SB1 IDLE yes φ

6 R R R R CPRB1 CPLB1 φ φ

7 R R L R SB1 IDLE no φ

Table 1: An example of two traces

3.2 Extracting Contexted Actions
We seek a policy for each agent in which the agent’s public
actions executions are identical to those that appear in the
team plan. That is, the agent should execute the same public
actions it executes in the team plan and in the same contexts.
To generate such a policy, we define an appropriate reward
function for each agent that encourages the agent to execute
the public actions in the team plan in its own plan and in the
same context.

The context of an action must capture the conditions un-
der which the policy chooses the specific action to be ex-
ecuted. We can associate the context with a specific state,
but this is too restrictive, as the state might contain various
variables that are irrelevant to the action. It is preferable to
define a less restrictive context that generalizes to all states
where the action achieves the same effects.

Definition 1. The context of an action a for agent i is the
set of values 〈xj1 , ..., xjk〉 for the public variables and the
private variables of agent i.

Definition 2. A contexted action (CA for short) is a pair
〈c, a〉, where a is a public action and c is the context of a,
such that there exists a trace t and an index i, where ti =
〈s, a, ω〉, and c and s assign identical values to the context
variables of a for agent i.

We extract the CAs for agent i, denoted CActionsi from
the traces. For each trace t, we identify all the public ac-
tions in t. For each such public action a of agent i executed
in a state s, we identify the context c — the values that s
assigns to the public variables of the problem and private
variables of agent i. In many cases, even though an action
a is executed in two different states s1, s2 in the traces, the
context is identical, as we are interested only in the values of
the state variables that are relevant to the execution. We fo-
cus on the public actions because the projected single agent
problems are designed to plan execute these actions only in
their appropriate context.

Example 7. Returning to our Box-Pushing example: we
find the following public CAs of Agent1 in the traces:

• (L,R,R,L),PRB2

• (R,R,R,R),CPLB1

We construct CActions1 for Agent1 by taking the values of
the public variables of the problem, and the private variables
of Agent1. The public variables are XB1, XB2, while the
private variable of Agent1 is XA1.

This results in the following CAs:

• 〈XA1 = L,XB1 = R,XB2 = L〉, PRB2

• 〈XA1 = R,XB1 = R,XB2 = R〉, CPLB1

We next describe how the single-agent problems are con-
structed, given the CActionsi sets.

3.3 Single Agent Projection
Our next step is to define a factored POMDP Pi for each
agent i. Pi is designed to incentivize the agents to execute
the contexted actions of i in the appropriate context. The
actions of other agents are used to ”simulate” some of the
behaviors of the other agents – behaviors that eventually en-
able the agent to carry out its own actions. Pi contains all
state variables of the original problem. It also contains ac-
tions of agent i and of other agents. Other agents’ actions are
included to allow i to simulate their behavior. More specif-
ically, Pi contains all and only the public actions that ap-
peared in some trace of the team plan. In addition, Pi con-
tains all sensing actions of i, but not those of other agents.

For each private action a of another agent, Pi contains a
deterministic version of a. Here, we use the assumption that
each action has a known desired effect, and the determin-
istic version of a always achieves this desired effect. This
determinization is done mainly to simplify Pi, allowing us
to scale to larger problems. We can avoid this determiniza-
tion, at the cost of a more complicated Pi.

We now design the reward function of Pi,R′i. The rewards
incentivize the execution of the CAs in their appropriate con-
text, while the penalties discourage the agent from applying
them outside their context, so that its policy would emulate
its behavior in the team plan.

When considering the single agent problems, we no
longer want to reward the agents for achieving the team
problem goals, but rather reward them for achieving their
own parts of the team solution. Therefore, to make the new
goals beneficial, we need their associated rewards to surpass

the cost required to achieve them. To do so, we take a heuris-
tic upper bounding approach, which manifests the following
idea: In the single agent solutions, each CA will be preceded
by a sequence of private actions. If the reward for applying
that CA would surpass the total cost of its preceding actions
sequence sequence, the agent will find it beneficial to apply.
Furthermore, if satisfied for all CAs, the whole compound
of single agent goals would become beneficial to achieve.

Let MaxCost be the maximal negative reward received
by a private action, that appeared in the traces. Recalling
that we assume each action to have a single successful out-
come, let MinSP be the minimal success probability of all
actions in the problem, and MinCASP the minimal suc-
cess probability of the actions appearing in the CAs. Let
MTL be the maximal trace length we produced, and MPG
be the Maximal Public Gap – the maximal number of pri-
vate actions that precede a public action in the traces. We
set ε > 0 to some small positive value. Let CA = 〈c, a〉
be a contexted-action and Cost(CA) be the maximal nega-
tive reward received from CA in the traces (and 0 if it was
always positive). We compute rCA, the reward given to CA:∑MTL−1

i=MTL−MPG(MaxCost
MinSP · γ

i−1) + Cost(CA)·γMTL−1

MinSP + ε

γMTL−1 ·MinCASP

The numerator is an upper bound on the expected discounted
cost we would pay before applying CA as the last CA (the
preceding sequence cost + the cost of the CA itself). The de-
nominator amplifies that cost to be beneficial when sched-
uled as the last action in the policy.

As noted, we penalize the application of public actions in
contexts other than those they appeared in in the team plan.
This also eliminates potential positive reward cycles (Ng,
Harada, and Russell 1999) that can cause an agent to end-
lessly achieve one of its sub-goals. The penalty is chosen
to be −maxCA∈CActionsirCA· |CActionsi| , as an upper
bound on the sum of rewards that can be achieved from ap-
plying CAs. This ensures that public actions executed out
of context cost more than applying all the CAs. There is
no penalty for other agents’ CAs (i.e., contexted actions in⋃
j 6=i CActionsj). We want to allow the agent to simulate

other agents’ CAs in order to plan the execution of its own
actions at appropriate times, and also in order to act based
on the uncertainty these actions can introduce.

Finally, we remove rewards related to public variables the
agent can achieve because single-agent POMDP’s role is to
imitate the team policy, not compute an alternative solution.

Given an action a ∈ Ai, a source state s and a
state s′ 6= s which differs from s on at least one vari-
able X ∈ eff (a), we set R′i(s, a, s

′) = R(s, a, s′) −
max (0, R(s, a, s′)−R(s, a, s))

Example 8. We now construct Agent1’s single-agent prob-
lem. We denote the CAs from the previous example with
ca1, ca2, and their reward with rca1 , rca2 . We follow the pro-
jection stages one by one:

1. As the push action is the only public action in the prob-
lem, we remove all push actions except for the ones that
are observed in the traces. For Agent2 we leave only
CPLB1 and for Agent1 we leave CPLB1 and PRB2.

Notice that we keep Agent2’s CPLB1 action in Agent1’s
problem, as we might need to simulate it.

2. We remove the sensing action of Agent2, as well as its
observation variable.

3. We don’t have any non-deterministic private actions, so
no actions are turned to deterministic.

4. We add a penalty of−2·max(rca1 , rca2) to the remaining
public actions, applied in any context except for the CA’s
contexts.

5. We add the rewards rca1 , rca2 to ca1 and ca2 respectively.
6. The rewards for pushing the boxes to the target cells are

set to 0 - we reward the agent only for doing its public
action in context.

3.4 Policy Adjustment and Alignment
We run the planner on each of the single agent projections
that we generate, constructing a set of single agent policy
graphs for the projections. We now adapt the policies to ap-
ply to the joint problem.

First, the projection of agent i contains private actions of
other agents that must be removed. We traverse through the
policy graph and replace every action of another agent by its
child. As we do not allow sensing actions of other agents,
there is always a single child to actions of other agents.

We now align the policies to increase the chance that ac-
tions of different agents occur in the same order as in the
team plan. An action a1 of agent 1 that sets the context value
of a variable in the context of an action a2 of agent 2 should
be executed before a2. Also, collaborative actions should be
executed at the same time by all participating agents.

Given stochastic action effects, we cannot guarantee that
the policies will be well correlated. It is desirable that we
will maximize the probability of synchronization, but cur-
rently, we only offer a heuristic approach that empirically
improves synchronization probability.

For each public action a in the team plan we select a sim-
ple path from the root to a. The identifier of the action is
the sequence of public actions along the simple path. Public
actions in individual agent policy graphs that share the same
identifier are assumed to be identical in all graphs.

For a public action a that has the same identifier in all
agent graphs, let l be the length of the longest simple path
to the action in all policy graphs, including private actions.
In any graph where the length is less than l, we add no-op
actions prior to a to delay its execution.

We use an iterative process — we begin with the action
with the shortest identifier (breaking ties arbitrarily), and de-
lay its execution where needed using no-ops. Then, we move
to the next action, and so forth. After the alignment we re-
move from each agent’s aligned policy graph all the public
actions of other agents.

Finally, we handle the problem of a potential “livelock”
between collaborative actions. Consider a scenario where
two agents need to perform a non-deterministic collabora-
tive action whose effect can be directly sensed. To do so,
after executing the action, both agents perform a sensing ac-
tion that senses the effect of that collaborative action. In ex-
ecutions, the agents may be unsynchronized, applying the

collaborative and sensing actions in an alternating manner,
where one agent performs the collaborative action while the
other performs the sensing action, causing them to enter a
livelock. To handle that, given a collaborative action with n
collaborating agents, we modify the graph so that every col-
laborative action that is part of a cycle is repeated by every
agent for n times instead of just once. This way, a livelock
can never occur.

Example 9. Figures 1(a) and 1(b) show Agent1’s policy
graph before and after the alignment and adjustments pro-
cedure. Since Agent2’s job is only to collaboratively push
Box1 with Agent1, there are no action simulations of Agent2
in Agent1’s policy, hence no alignment is required. The only
modification that occurs is the insertion of the live-lock han-
dling.

4 Empirical Evaluation
We provide experimental results focusing on longer plan-
ning horizons and scaling up with respect to current Dec-
POMDP solvers. The experiments were conducted on a vari-
ation of the popular cooperative box pushing problem. We
compare our algorithm, FDMAP, with two Dec-POMDP
solvers, GMAA-ICE (Oliehoek et al. 2013) and JESP (Nair
et al. 2003), using MADP-tools. (Oliehoek et al. 2017). We
evaluate FDMAP, GMMA-ICE and JESP on a Linux ma-
chine with 4 cores and 8GB of memory.

4.1 Collaborative Box-Pushing
In the cooperative box pushing domain, agents on a grid can
move and push boxes in four principle directions, or perform
a no-op. Light boxes can be pushed by a single agent, while
heavy boxes can only be pushed by a collaborative push of
two agents. All actions except for the push actions are deter-
ministic.

Each grid cell can contain any number of agents and
boxes, and each agent can sense for a box at its present lo-
cation. Initially, each box can appear in either the target cell
(and hence, need not be moved) or the lower right cell, with
equal probability. The goal of the agents is to move the boxes
to a target cell, located at the upper left corner of the grid.

Each action (except for no-op) has a cost — 10 for mov-
ing, 1 for sensing (encouraging sensing rather than blindly
pushing), 30 for pushing, and 20 for a collaborative push
(per agent). The reward for moving a box to its target posi-
tion is 500. In addition, there’s a penalty of 10000 for push-
ing a box out of the target cell to avoid abuse. In configura-
tions with heavy boxes we double the reward and penalty. A
domain instance of m cells with n agents, l light boxes, and
h heavy boxes, hasmn+l+h states, (5·(l+1)+4h·(n−1))n

actions and 3n observations.
Evidently, the box pushing domain calls for longer hori-

zon policies, rather than good local reactive policies, and re-
quires careful coordination to ensure that collaborative push
actions are performed simultaneously by the agents.

4.2 Settings
We compared FDMAP with GMAA-ICE and DP-JESP.
GMAA-ICE and DP-JESP require an horizon specification,

(a) Before

(b) After

Figure 1: Agent1’s Policy

while FDMAP computes a policy for an unbounded hori-
zon. Therefore, we specify the maximal reached planning
horizon for them under the column -H-, and for FDMAP
we specify the average number of steps until reaching the
goal state, under the column -Avg-. Discount factor is set to
γ = 0.99.

For GMAA-ICE and DP-JESP we report the computed
policy value. For FDMAP we measured the average dis-
counted accumulated reward of 1000 simulations.

We provide results on several configurations of Collabo-
rative Box-Pushing. Each box starts at either the top-left or
bottom-lower corner with equal probabilities. The problem
name convention is composed of 5 marks (each mark spec-
ified in brackets), BP − [w][h][n][l][h]. The marks stand for
Width, Height, Number of agents, Number of light boxes,
Number of heavy boxes. For 1 dimensional grids, DP-JESP
and GMAA-ICE were given a minimalistic version of the
problem that does not include unnecessary actions — push
and move for the up and down directions — to decrease the
domain size. We specify the agents’ initial locations (de-
noted by I), as well as the domain size, alongside the con-
figuration name.

All planners were given a total of 3600 seconds to
solve each 〈configuration, horizon〉 pair. In addition, we also
limited the solution of each single-agent problem withint
FDMAP to 900 seconds. For the hardest problem configu-
ration (BP-33221), we also present results for larger time
limit, as 900 seconds were not sufficient for the agents to
solve their Pi.

The time shown for DP-JESP and GMAA-ICE is based
only on its log from MADP-Toolbox, and does not include
the problem loading, which is in many cases non negligible.
FDMAP time does not include writing the SARSOP policies
and graphs to disk, as they are highly dependent on hardware
quality and can effectively remain in memory throughout the
whole process.

In both GMAA-ICE and DP-JESP, configurations BP-
32302, BP-32303 and BP-33221 could not be solved for any
horizon. Therefore we provide comparisons only for the first
four configurations (Table 2), while the harder configura-
tions are shown in Table 3. We also provide a more sensitive
analysis of the horizon in table 5

In DP-JESP, × marks a timeout. In GMAA-ICE we mark
two different timeout options: FF refers to failure of finding
a full policy for the required horizon, where FH refers to an
earlier stage timeout when computing the heuristic function.

4.3 Results
The main comparison is presented in Table 2. We can see
that FDMAP manages to produce policies with higher qual-
ity, as these policies require horizons beyond those that the
other planners can handle. We also see that FDMAP’s plan-
ning time is significanlty smaller. This is due to the fact that
FDMAP does not plan directly on the decentralized model,
but rather solves multiple POMDP models, which are known
to require much less computational effort (Bernstein, Zilber-
stein, and Immerman 2013).

For the largest problems, shown in Table 3, FDMAP still
manages to produce good quality policies, yet with signifi-

DP-JESP GMAA-ICE FDMAP
BP-31211 |S| = 81, |A| = 16, I = 〈(1, 2), (1, 3)〉

H Time Value H Time Value Avg Time Value
4 1861.30 279 4 30.23 330.07 15 2.03 590.82

BP-22202 |S| = 256, |A| = 225, I = 〈(1, 2), (2, 2)〉
H Time Value H Time Value Avg Time Value
3 267.24 271 3 160.18 320.46 9 3.88 356.08

BP-22203 |S| = 1024, |A| = 400, I = 〈(1, 2), (2, 2)〉
H Time Value H Time Value Avg Time Value
2 59.06 0 2 1053.27 414 17 21.01 518.02

Table 2: The results for configurations BP-31211, BP-22202
and BP-22203. FDMAP outperforms DP-JESP and GMAA-
ICE with respect to both running time and policy value. The
running time is improved significantly. Results for DP-JESP
and GMAA-ICE are for maximal horizon reached, specified
under the -H- column. In FDMAP we present the average
number of steps until reaching the goal state when running
the policy for an unbounded number of steps, specified un-
der the -Avg- column

FDMAP
Problem MaxSteps AvgSteps Time Value %Wins

BP-32302
|S| = 7776, |A| = 3375 40 14 92.70 243.91 100
I = 〈(1, 2), (1, 3), (2, 3)〉

BP-32303
|S| = 46656, |A| = 8000 43 21 1799.94 353.82 98
I = 〈(1, 2), (1, 3), (2, 3)〉

BP-33221
|S| = 59049, |A| = 324 124 37 2962.29 8.64 95
I = 〈(1, 3), (3, 1)〉

BP-33221
3600 seconds per agent 105 35 5379.32 345.56 100

Table 3: Results for the largest scale problems, which only
FDMAP managed to solve. Running times are rapidly in-
creasing while reaching the scales limit of the underlying
POMDP solver. The policies are still very robust, and reach
the goal state in most cases (%Wins). MaxSteps and Avg-
Steps specify the maximal and average number of steps
made until reaching a goal state throughout the runs.

DP-JESP GMAA-ICE FDMAP
BPPEN-31211 |S| = 81, |A| = 16, I = 〈(1, 2), (1, 3)〉

H Time Value H Time Value Avg Time Value
3 25.95 0 5 3537.67 438.95 15 1.99 568.20

BPPEN-22202 |S| = 256, |A| = 225, I = 〈(1, 2), (2, 2)〉
H Time Value H Time Value Avg Time Value
3 495.61 135.40 3 446.03 213.79 9 3.72 289.55

BPPEN-22203 |S| = 1024, |A| = 400, I = 〈(1, 2), (2, 2)〉
H Time Value H Time Value Avg Time Value
2 38.70 0 2 1054.5 326.504 15 14.67 533.26

Table 4: Results for a variation of Collaborative Box-
Pushing, in which we penalize an agent for pushing a light
box blindly

BP-21210 |S| = 8, |A| = 16, I = 〈(1, 1), (1, 2)〉
H DP-JESP GMAA-ICE FDMAP

Time Value Time Value Time Value
4 19.87 0 1.15 426.91 1.28 329.34
5 1069.95 0 2.09 438.34 ” 321.12
6 × - 6.97 448.19 ” 337.63
7 × - 8.98 450.97 ” 416.74

Max 1069.95 0 (5) 17.1 454.7 (25) 1.28 414.36 (4)

Table 5: Results for BP-21210. FDMAP outputs a reason-
able value compared to GMAA-ICE, which optimizes the
small scaled problem. The last row presents results for the
maximal horizon reached on DP-JESP and GMAA-ICE, and
average simulations steps until reaching the goal state for
FDMAP when run for unbounded number of steps. These
are specified in parentheses next to the policy value

cantly longer running time. The size of the hardest config-
uration, BP-33221, approaches the maximal problems that
SARSOP (Kurniawati, Hsu, and Lee 2008) can solve.

Table 5 shows that FDMAP manages to produce reason-
able results compared to the other solvers even when dealing
with extremely small domains in which optimal solvers such
as GMAA-ICE can excel.

To observe the difference between the policies FDMAP
produces to the ones GMAA-ICE does, we present another
variation of the domain, where we add a penalty of 101 to
light boxes push actions that occur with no box in the cell.
The penalty is chosen to be slightly higher than the reward
for pushing a box to the target cell, times the fail probabil-
ity of the push action. Table 4 presents the results (config-
uration name prefixed with BPPEN). We can see that the
the reward difference on maximal results compared to Ta-
ble 2 are much lower for FDMAP, indicating that FDMAP’s
policies in the non-penalty configurations exploit the hori-
zon and avoid blindly pushing, leading to higher-quality
results. If we would handle domains in which reward can
be only achieved in large horizons, a case that was men-
tioned in contexts of reward shaping (Brys et al. 2014;
Laud and DeJong 2003), we expect FDMAP’s ability to
scale to very large horizons while managing to reward agents
for their public goals, to become crucial.

5 Conclusion And Future Research
We presented FDMAP — an algorithm for solving fac-
tored Dec-POMDPs. FDMAP begins by solving a central-
ized POMDP, which we call the team POMDP, obtaining a
team plan. Then, FDMAP creates agent specific POMDPs
whose solutions encourage agents to complete their role in
the team plan. The agent plans are then aligned for synchro-
nization between the agents. We experiment with box push-
ing examples that require collaboration, showing that we can
scale to much larger problems than current Dec-POMDP
solvers, while computing a reasonable policy.

There are two direction in which we deem FDMAP can
be improved, in both scalability and solution quality. The
use of online planners instead of SARSOP as the underlying
POMDP solver, can greatly improve the scale of solvable

problems. The changes in terms of algorithm’s structure are
minor, as we merely need to be able to produce the single
agent policy graphs using an online solver. In terms of so-
lution quality, we aim at using more principled methods of
reward shaping, that come from the field of reinforcement
learning in forms of multi-objectivization (Brys et al. 2014).
Our goal would be to convert the concept of contexted ac-
tions into objectives of each agent, while preserving opti-
mality with respect to the decentralized problem.

Acknowledgements
This work was supported by ISF Grants 1651/19, by the Is-
rael Ministry of Science and Technology Grant 54178, and
by the Lynn and William Frankel Center for Computer Sci-
ence.

References
Agrawal, R. 2019. Concentration of the multinomial in
kullback-leibler divergence near the ratio of alphabet and
sample sizes. CoRR abs/1904.02291.
Bazinin, S., and Shani, G. 2018. Iterative planning for de-
terministic qdec-pomdps. In Lee, D.; Steen, A.; and Walsh,
T., eds., GCAI-2018. 4th Global Conference on Artificial In-
telligence, volume 55 of EPiC Series in Computing, 15–28.
EasyChair.
Bernstein, D. S.; Zilberstein, S.; and Immerman, N. 2013.
The complexity of decentralized control of markov decision
processes. CoRR abs/1301.3836.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage. J. Artif. Int. Res. 11(1):1–94.
Brafman, R., and Domshlak, C. 2006. Factored planning:
How, when, and when not.
Brafman, R. I.; Shani, G.; and Zilberstein, S. 2013. Qualita-
tive planning under partial observability in multi-agent do-
mains. In Proceedings of the Twenty-Seventh AAAI Confer-
ence on Artificial Intelligence, AAAI’13, 130–137. AAAI
Press.
Brys, T.; Harutyunyan, A.; Vrancx, P.; Taylor, M. E.; Ku-
denko, D.; and Nowe, A. 2014. Multi-objectivization of
reinforcement learning problems by reward shaping. In
2014 International Joint Conference on Neural Networks
(IJCNN), 2315–2322.
Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. Sarsop: Ef-
ficient point-based pomdp planning by approximating opti-
mally reachable belief spaces. In In Proc. Robotics: Science
and Systems.
Laud, A., and DeJong, G. 2003. The influence of reward on
the speed of reinforcement learning: An analysis of shaping.
In Proceedings of the Twentieth International Conference on
International Conference on Machine Learning, ICML’03,
440–447. AAAI Press.
Maliah, S.; Brafman, R. I.; and Shani, G. 2017. Increased
privacy with reduced communication in multi-agent plan-
ning. In Proceedings of the Twenty-Seventh International
Conference on Automated Planning and Scheduling, ICAPS

2017, Pittsburgh, Pennsylvania, USA, June 18-23, 2017.,
209–217.
Nair, R.; Tambe, M.; Yokoo, M.; Pynadath, D.; and
Marsella, S. 2003. Taming decentralized pomdps: Towards
efficient policy computation for multiagent settings. 705–
711.
Ng, A. Y.; Harada, D.; and Russell, S. J. 1999. Policy in-
variance under reward transformations: Theory and appli-
cation to reward shaping. In Proceedings of the Sixteenth
International Conference on Machine Learning, ICML ’99,
278–287. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc.
Nissim, R., and Brafman, R. I. 2014. Distributed heuristic
forward search for multi-agent planning. Journal of Artifi-
cial Intelligence Research (JAIR) 51:293–332.
Oliehoek, F. A., and Amato, C. 2016. A Concise Introduc-
tion to Decentralized POMDPs. SpringerBriefs in Intelli-
gent Systems. Springer.
Oliehoek, F. A.; Spaan, M. T. J.; Whiteson, S.; and Vlas-
sis, N. 2008. Exploiting locality of interaction in factored
dec-pomdps. In Proceedings of the 7th International Joint
Conference on Autonomous Agents and Multiagent Systems
- Volume 1, AAMAS ’08, 517–524. Richland, SC: Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.
Oliehoek, F. A.; Spaan, M. T. J.; Amato, C.; and Whiteson,
S. 2013. Incremental clustering and expansion for faster
optimal planning in decentralized POMDPs. 46:449–509.
Oliehoek, F. A.; Spaan, M. T. J.; Terwijn, B.; Robbel, P.; and
Messias, J. a. V. 2017. The madp toolbox: An open source
library for planning and learning in (multi-)agent systems.
J. Mach. Learn. Res. 18(1):3112–3116.
Oliehoek, F.; Kooij, J.; and Vlassis, N. 2008. The cross-
entropy method for policy search in decentralized pomdps.
Informatica (Slovenia) 32:341–357.
2014. Pomdpx file format (version 1.0).
Sanner, S. 2011. Relational dynamic influence diagram lan-
guage (rddl): Language description.
Seuken, S., and Zilberstein, S. 2007. Memory-bounded
dynamic programming for dec-pomdps. In Proceedings of
the 20th International Joint Conference on Artifical Intel-
ligence, IJCAI’07, 2009–2015. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.
Shekhar, S., and Brafman, R. I. 2020. Representing and
planning with interacting actions and privacy. Artificial In-
telligence 278:103200.
Shekhar, S.; Brafman, I. R.; and Shani, G. 2019. A factored
approach to deterministic contingent multi-agent planning.
ICAPS 419–427.

