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Preface

The motivation for using hierarchical planning formalisms is manifold. It ranges from an ex-
plicit and predefined guidance of the plan generation process and the ability to represent complex
problem solving and behavior patterns to the option of having different abstraction layers when
communicating with a human user or when planning cooperatively. This led to numerous hi-
erarchical formalisms and systems. Hierarchies induce fundamental differences from classical,
non-hierarchical planning, creating distinct computational properties and requiring separate algo-
rithms for plan generation, plan verification, plan repair, and practical applications. Many issues
required to tackle these – or further – problems in hierarchical planning are still unexplored.

With this workshop, we bring together scientists working on many aspects of hierarchical planning
to exchange ideas and foster cooperation.

Like in previous years, a range of topics is addressed in the submitted papers. Half of the accepted
papers deal with heuristic search. Two of these introduce novel HTN planning heuristics: One
bases on the concept of landmarks, and the other on an encoding of delete-relaxed HTN problems
using (Integer) Linear Programming (LPs and ILPs). The third paper introduces Monte Carlo
Tree search into HTN planning. One paper attempts to establish a well-founded link between
HTN planning, HTN plan recognition, and natural language processing via the introduction of a
new planning model based on formal grammars. Another paper deals with repairing failed plans,
while the last one formalizes (German) legal opinions in terms of HTN planning knowledge as a
basis for tool support for students, lawyers, and judges.

Due to the ongoing COVID restrictions, ICAPS – and thus the HPlan workshop – will go
online. Just like the main conference and (most, if not all of) the other workshops we will use
gather.town to meet virtually. To establish some of the “ICAPS family feeling” despite being
online, we decided to only have poster presentations (except for 5 minute poster teaser talks, but
these will be pre-recorded, streamed, and without discussion/questions, as these will be moved
to the poster presentation). In those poster sessions, each presenter has designated area within
the virtual workshop room, where he/she waits. Once he/she gets approached, he/she shares
his/her screen and starts the (group) conversation. So everybody can just join in at an arbitrary
time or even approach other (groups of) people during the workshop within the room – thus
giving back a bit of the real-world workshop and conference experience.

Pascal, Daniel, Roman, and Ron,
HPlan Workshop Organizers,
October 2020
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Formalising German Legal Opinions as Planning

Gregor Behnke
University of Freiburg

behnkeg@informatik.uni-freiburg.de

Abstract

A legal opinion in the German legal system is a formal piece
of writing that investigates whether a given statement of law
is true or not given a description of a specific case. Writing
these opinions is the central element of German legal educa-
tion, but is supported only by basic IT technologies, such as
text-based search engines. Formalising legal thoughts would
enable the creation of various tools that support students,
lawyers, and judges in correctly applying the law.
German legal opinions are interesting are interesting from a
research perspective as they follow a strictly formalised struc-
ture and method of argumentation. In practice, these opin-
ions can (often) be seen as a thorough application of so-called
schemata. A schemata provides a fixed way to check whether
a specific assertion of law holds or not by providing sub-
assertions to check and a rule on how these results should be
combined. In essence, these schemata therefore describe a hi-
erarchical (but potentially recursive) structure on legal terms
and properties.
We propose a formalisation of these schemata in terms of Hi-
erarchical Task Network (HTN) planning. The modelled do-
main will describe the application of the law on the specifics
of a given case s.t. the resulting plan and its decompositional
structure will constitute the structure of a legal opinion on the
case.

1 Introduction
Almost any action has some connection to the legal system
we are living in. Either by means of civil law (governing the
relationship between peoples and between people and ob-
jects), public, or criminal law (dealing with the connection
between the state and its citizens). Despite its pervasiveness,
the legal argumentation is still a relatively manual task. Es-
pecially when learning to apply the law, there is almost no
automated support – apart from e.g. search engines.

Applying the law is a multi-step process. First, the facts
relevant to the case in question must be gathered. Second,
these facts are associated with legal concepts – a process
called subsumption. For example one may have to decide
whether the letter written by a vendor is a “firm summons
to pay” (which is required for a notice of default). Third,

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

we have to reason about legal consequence, e.g. who has an
obligation to pay. The first two steps deal with the fuzzy and
uncertain aspects and are thus more suited for sub-symbolic
techniques like machine learning.

The third step may however be viewed as “purely log-
ical”. At least for the anglo-american common law sys-
tem, this is not the case, as legal reasoning here hugely
depends on matching prior cases against the facts of the
case at hand – which again is a fuzzy process. Thus re-
search for common law systems often deals with reason-
ing on the basis of precedents (Atkinson and Bench-Capon
2019). In civil law systems, the application of the law de-
pends only on the written law. The constant jurisprudence
of the highest courts may still play a role in the inter-
pretation of the written law, but is not as dominant as is
the common law. As such, there is a body of work deal-
ing with the formalisation of legal reasoning, e.g. as De-
ontic Logic (Jones and Sergot 1992), as Answer Set Pro-
gramming (Aravanis, Demiris, and Peppas 2018), as PRO-
LOG rules (Satoh et al. 2011), as ontologies (Palmirani
and Governatori 2018), or as argumentation (Marshall 1989;
Prakken and Sartor 2015).

How reasoning about the consequences of given facts un-
der the law is performed depends on the legal system. Ger-
many’s legal system uses opinions to derive consequences,
which follow a highly formalistic and logic-driven style of
argumentation (Kischel 2019, p. 417ff). Notably, there exist
pre-determined ways and means for determining whether a
statement X follows from the specifics of a given case, so-
called schemata. For this, the schema sets out a sequence of
other statements that have to be checked and a rule on how
to combine them.

In this paper, we present a formalisation of these schemata
in terms of planning. With this formalisation we are (1)
able to derive the truth of a statement given an appropri-
ately modelled fact (at least to some degree) automatically
and (2) lay the foundation for future automated assistance of
legal scholars, layers, and students. Notably, the plan gen-
erated for a given fact will correspond to the structure of
the opinion for checking it. We could, for example, use our
formalisation as the basis for teaching student specific con-
cepts of law – by developing opinions in cooperation with
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them. Note that we do not aim at fully writing an opinion,
we rather aim at representing the structure and argumenta-
tion contained in the opinion. Any verbalisation would be
out of scope of a conference paper and we consider it future
work.

We start by giving a brief introduction into Legal Opin-
ions and their structure and will then introduce our running
example that we will consider throughout the paper. We then
introduce the concept of HTN planning. Thereafter we dis-
cuss how the structure of opinions and their schemata can be
represented in terms of HTN planning problems.

2 Legal Opinions and German Civil Law
Legal reasoning is – at least in Germany – most often con-
tained in written so-called opinions. An opinion is a struc-
tured collection of arguments what show why a legal result
(e.g. a title or a right) is entailed by the law and the specifics
of a given case. For example, an opinion may ask whether a
person B has the obligation to pay a given amount of money
to a claimant A. Writing opinions is the central element of
legal training at German universities. Almost all university
exams require students to write an opinion on a given case.
Further, the First State Exam (the first part of the German
bar exam) consists of six written tests, each asking to write
a legal opinion. The strict adherence to structured and log-
ical arguments required for opinions sets legal education in
Germany apart from the system used in many other coun-
tries. Learning to write these opinions is however quite hard
for most students. Thus, supporting the process of learning
to write opinions with AI technologies may be a fruitful en-
deavour.

Argumentation in a legal opinion follows a strict style of
writing, called the opinion-style. In order to determine the
truth of a statement of law, one has to perform the four steps
of a syllogism, called the legal syllogism (German: “Justiz-
syllogismus”):
1. the premise,
2. the definition,
3. the subsumption, and
4. the result.
The premise states that a certain statement (about an obliga-
tion, a title, a right, or any other property or legal connec-
tion between two persons or a person and an object) might
be true. Then one defines the criteria under which the state-
ment is true, citing the relevant law. Within the subsumption,
the specifics of the case are mapped to the criteria set out
in the definition. Usually, the subsumption is the part of an
opinion that requires case-dependent argumentation. As the
subsumption is based on the verbal description of the case,
it is a highly fuzzy process. Lastly, if the requirements set
out in the definition are met, one concludes that the premise
is indeed true. If the definition again contains assertions that
cannot be directly mapped to specifics of the case, as they
are e.g. legal terms, the subsumption will contain further le-
gal syllogisms with these assertions as their premises. These
syllogisms are nested recursively.

We do not consider how subsumptions are made, as we
want to focus on the logical structure of opinions. Notably,

the AI techniques that should be used for performing or as-
sisting subsumptions are quite different from the ones we
use, i.e. they might be based on machine learning, natural
language processing, and text mining. Instead, we assume
that all possible subsumptions of the case have already been
made. We assume that we are presented with a given case
in terms of a set of logical atoms (instantiated ground predi-
cates) which refer to the most basic concepts of the law. Note
that this is not a restriction, but solely a clean separation be-
tween the logical and the fuzzy part of the opinion. If we,
in the future, are to apply this modelling we of cause have
to deal with extracting such a logical description based on
non-logical inputs. This may either be done using machine
learning techniques, or in collaboration with the user.

Example Case Whenever possible, we will use an exam-
ple case to illustrate the principles of our formalisation of
opinions in terms of planning problems. On June 21st K1

asked V whether he can buy a set of white floor tiles from V
– for 500 EUR. On June 23rd, V agreed. V delivered the tiles
to K three days later. K then installed the tiles in his bath-
room. Four months later, K noticed that the tiles changed
colour from white to greyish. An investigation revealed that
this was caused by a production error. K tells V that he wants
new tiles delivered to him. Neither K nor V could have no-
ticed the production error before the tiles were installed. Re-
moving the installed tiles and installing the new tiles will
cost 400 EUR.

In this case there are two questions: (1) is V required to
provide K with new tiles? (2) does V have to pay (addition-
ally) 400 EUR. We will elaborate on the specifics of the case
and the answers to the two questions throughout the paper.

3 HTN Planning
In this paper, we will use (totally-ordered) HTN plan-
ning (Ghallab, Nau, and Traverso 2004; Erol, Hendler, and
Nau 1996; Geier and Bercher 2011) to model the structure
of German legal opinions. HTN planning distinguishes two
types of tasks: abstract tasks and primitive actions. Both
are described via a name and a list of parameter variables,
each associated with a type. For example, (foo ?bar
?baz) denotes a task named foo with parameters ?bar
and ?baz. We use the syntax of PDDL (McDermott 2000)
to denote tasks. Variable names always start with a question
mark. A state is described via ground atoms of first order
logic, i.e. predicates with constants as their arguments. A
state is any subset s of these atoms. As in classical planning,
primitive actions in HTN planning carry a state transition
semantics, defined via their preconditions prec and effects
eff . prec may be any function-free first order formula refer-
ring to the variables that are parameters of prec’s actions. A
(ground) action a is executable in a state s, iff s |= prec.
The effect eff of an action consists of two sets of atoms add
and del which again may refer to the parameters of a. If a
is executed in s, it results in the state (s \ del) ∪ add. The
execution of sequences of states is defined inductively.

1Persons are customarily abbreviated by upper-case letters.
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Abstract tasks represent more complex courses of action
and do not carry a (direct) state-transition semantics. In-
stead, their semantics is defined via so-called decomposition
methods m = (t, tn). Here, t is the task the method decom-
poses and tn is a task network – for totally-ordered HTN
planning this is a sequence of other tasks, both primitive
and abstract. tn can also be an empty sequence. Applying
such a method means to replace an occurrence of t with tn.
The objective in HTN planning is given in terms of an ini-
tial abstract task tI . We now maintain a sequence π of tasks
and initialise it with tI . We repeatedly apply decomposition
methods to tasks in π, until π contains only primitive ac-
tions. This derived plan π is a solution to the HTN planning
problem if it is executable in the given initial state sI .

Additionally, many HTN planners (e.g. SHOP (Nau et
al. 1999)) allow for method preconditions. Such a precon-
dition prec associated with a method m restricts the ap-
plication of m to cases where the state prior to the first
task originating from m satisfies prec. Since we consider
only totally-ordered models, this is equivalent to the fol-
lowing restriction. Consider a current sequence of tasks
π = t1 . . . ti−1titi+1 . . . tn. Then a method precondition for
a method m applicable to ti must hold in the state between
ti−1 and ti.

4 Representing the Structure of Opinions
As stated before, we assume that the specifics of the
case we are to consider are already converted into a set
of atoms. In our modelling, these atoms form the ini-
tial state sI . In our example case, this includes e.g. the
facts (hasCondition whiteTiles beingGrey),
(usualCondition whiteTiles beingWhite),
and (handover V K whiteTiles June26). All of
them model (relevant) aspects of the given case.

A legal opinion in its entirety determines whether a given
premise holds or not. Throughout the opinion, sub-opinions
may discuss different other premises, each asking whether
a specific statement of law holds. Thus, we have to repre-
sent the notion of a premise in terms of the concepts of HTN
planning. A natural way to do so is to model premises as
tasks. This way, e.g. the initial abstract task tI will repre-
sent the premise of the whole opinion. In our example case,
this would be either (obligationToProvide K V
tiles) or (obligationToPay K V 400EUR). In
an opinion, we have to state the definition pertaining to the
premise P . Next, we either have to perform a subsumption
or have to start inner opinions that determine the truth of
statements made in P ’s definition.

If we only have to perform a subsumption, the premise P
only depends on the most basic concepts of the law, which
have to be inferred from the textual description of the case.
As stated before, we do not deal with the intricacies of ex-
tracting knowledge from the case in this paper, but only with
modelling a legal opinion based on it. As such, we assume
that the facts of the case are already fully modelled as ground
first order statements and can thus be checked in a primi-
tive action’s precondition. Thus, any premise P that only re-
quires a “pure” subsumption will be modelled as a primitive
action who’s preconditions will check the necessary facts.

If the premise’s definition refers to non-basic concepts,
we have to introduce inner opinions. We do this via mod-
elling such a premise as an abstract task A and introduce
the inner opinions via a method m applicable to A. m’s task
network contains a task for every premise that needs to be
checked in order to be able to determine the truth of the main
premise A.

The derivation of a plan π will correspond to the structure
of an opinion for the given case. To extract the structure of
the opinion, we simply follow the decomposition methods
applied for obtaining π. We start out with an opinion con-
taining the premise represented by the initial abstract task tI .
When looking at the method applied to tI , we know which
definition and sub-premises should be inserted into the opin-
ion. Similarly, if a decomposition yields a primitive action,
the opinion will contain a subsumption.

5 Schemata for Inner Opinions
We have just stated that decomposition methods will intro-
duce the necessary inner opinions. This assertion is some-
what vague and needs clarification. The central question at
this point – and of this paper – is which criteria need to be
checked in order to be able to establish the truth of a given
statement of law. For that – at least in civil law systems –
we have to turn to the written law. Most legal norms de-
scribe at their core an implication where a set of premises
are mapped to a consequence. There are other types of le-
gal norm, e.g. describing the intention of the legislator (e.g.
§ 1 of Germany’s Nuclear Law: “The purpose of this law
is (1.) to end the use of nuclear energy for commercial pur-
poses in an orderly fashion . . . ”) or describe broad abstract
statements (e.g. Article 1 of Germany’s Basic Law: “Human
dignity shall be inviolable.”). These types of statements are
not used for directly determining whether a given statement
of law is true, but (for (1.)) for interpreting under-specified
terms in the law. How such interpretations may be consid-
ered within a formalised version of the law is out of scope of
this paper and may be considered in future work. Thus we
are interested in norms that provide as their consequence the
statementA – our current premise represented by an abstract
task. Of course there can be multiple norms providing the
same consequence, and there are often norms that provide
exceptions, counter-exceptions, counter-counter-exceptions,
and so on for a given assertion. These are known to be quite
difficult to handle in a general fashion; see for negation in
legal reasoning e.g. (Kowalski 1989).

When writing an opinion the complexities of these logical
structures are often simplified by – to some degree – stan-
dardised structures for checking whether a given assertion
is true or not (Kischel 2019, p. 419f.). Instead of solely ap-
plying the word of the law, in many practical cases there are
established so-called schemata that outline how a specific
assertion should be checked, in which order the individual
premises should be checked, which exceptions and counter-
exceptions should be considered, and in which order. There
are even whole books that summarise these schemata for
different areas of the law (Maties and Winkler 2018). This
apparent “standardisation” serves (in the authors’ opinion)
the purpose of conformity of expectations: the reader of an

Proceedings of the 3rd ICAPS Workshop on Hierarchical Planning (HPlan 2020)

3



opinion knows what the writer wants to do next and why the
author does or does not discuss certain issues at each point
while reading the opinion. Schemata also ease a student’s
understanding of the law, as they are able to “follow them”
and by that will obtain the correct result in applying the law.
For that however, they first have to understand their mean-
ing, learn them, and be able to extract them from the written
law.

Naturally there are situations when applying the law,
where no schemata are available, i.e. where the meaning of
the law must be interpreted manually. How this is done is a
quite complex topic, as it e.g. includes argumentation of the
intent of the legislator. Formalising this kind of fuzzy area of
applying the law is thus difficult and we consider it to be out
of scope of our work. We will restrict our modelling to areas
of the law where well-established schemata for applying the
law exists. The difficulty in practise lies in correctly apply-
ing these schemata and extracting the relevant facts from a
description of the case. The work in this paper is however
still necessary and useful, as it lays the foundation for being
able to connect reasoning about the more fuzzy parts of legal
argumentation with those that are more standardised.

6 Logical Structure of Schemata
As discussed in the previous section, when modelling what
needs to be checked in order to establish the truth of a given
statement of law, we use the well-defined schema for it. Such
a schema is essentially a list of conditions under which a
given statement holds. As an example, consider the require-
ments for supplementary performance in German Warranty
Law. Supplementary performance is the process or act with
which a bought object that is defective is repaired or re-
placed, i.e. the case where the buyer is given e.g. a non-
working object and thus has the right to either get the object
repaired or replaced. This is exactly the situation we face in
question (1) of our example case: K wants to have the tiles
replaced.

Supplementary performance is required if (1) vendor and
buyer have a valid sales contract, (2) the purchased object
has a “defect” (German: “Sachmangel”), (3) this defect was
present when the risk passed from the vendor to the buyer
(German: “Gefahrübergang”) and (4) the rights arising from
defects are not precluded ((Maties and Winkler 2018), Nr.
178). If one is to check whether a right to supplementary
performance exists, one has to check these four criteria. Fur-
ther, there are two types of supplementary performance: re-
pair and replacement. In our example case, K wants the
tiles to be replaced. The schemata for replacing an object
is this case required (1) that a right to supplementary per-
formance exists, (2) K has selected replacement, and (3) no
right to withhold performance because of disproportional-
ity ((Maties and Winkler 2018), Nr. 178). When checking
whether K has the right to new tiles, the top-most structure
of the opinion is as shown in Fig. 1. In an opinion the condi-
tions just listed always appear in the same fixed order. Fur-
ther, if one of the conditions is not satisfied, the opinion must
discuss all conditions prior to the not satisfied one as well,
but not the ones afterwards. If, e.g. the object has no defect
under the law, one still has to show that there is a valid sales

contract, but can omit discussing the passing of the risk and
so on.

However, not all schemata describe conjunctions of con-
ditions. For example, there are in total seven causes for a
defect of an object – detailed in § 434 and § 435 BGB.2
In order for an object to have a defect under the law, one
of these causes suffices, i.e. they form a conjunction. One
might think that checking only one – namely the one con-
stituting the defect – might be sufficient in an opinion. This
is not the case. The causes for a defect have an implicit and
customary order in which they have to be discussed ((Maties
and Winkler 2018), Nr. 176 and 177). Notably, if e.g. the
fourth cause of a defect is present, but not the first three,
an opinion must discuss and reject the first three causes. On
the other hand, there are also disjunctions, for which it is
not necessary to check all possible causes until the first one
is successful. Examples are e.g. causes for the invalidity of
declarations and causes for a suspension of the statute of
limitations. Here, it is sufficient to check the single cause
that will lead to the desired result. Lastly, there are also dis-
junctions for which all conditions must be checked fully, i.e.
one has to check any possible criterion causing a statement
to become true, irrespective of the truth of the other criteria.
One notable example for this is the crime of causing bodily
harm (“Körperverletzung”): it requires that the perpetrator
to either “physically assault” someone or to cause “damages
to health”. In an opinion, both criteria must be checked –
even if the first one is already fulfilled – while one of the
two being fulfilled is sufficient.

When modelling schemata in an HTN planning problem,
we will thus distinguish four types of logical connectors:
1. conjunction,
2. ordered disjunction,
3. free disjunction, and
4. complete disjunction.
Next, we have to consider that it is not only sufficient for an
opinion to check whether a given statement of law holds. In
many cases it is also necessary to check whether the con-
trary is true, i.e. that a given statement does not hold. We
have already seen two such cases above, namely the condi-
tions (4) no preclusion and (3) no right to withhold. As a
further example, a cause for a defect is that the vendor has
not provided a manual and the buyer did not successfully
assemble the object (§ 434 II 2 BGB, the so-called IKEA-
clause). Similarly, a claim can only be pursued as a general
rule, if the statute of limitations has not expired. Note that
these negations can be nested in complex cases – or if we
want to check e.g. the absence of a claim between two per-
sons.

Thus our modelling of schemata has to handle negations.
A purely logical approach to negation is not suited as legal
opinions require specific structures of argumentation, which
are different from a purely logic-based argumentation. Con-
sider the negation of a conjunction, i.e. we want to check that
a given statement is not true and the truth of this statement
is based on a conjunctive schema. From a logical point-of-
view, it is sufficient to find one condition x in the conjunc-

2BGB = Bürgerliches Gesetzbuch, Germany’s civil code
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delivery of new tiles

supplementary performance replacement selected no right to withhold

sales contract defect passing of risk no preclusion . . .

. . . . . . . . . . . .

Figure 1: Structure of an opinion for the example case at its top layers.

tion that is not true. However in an opinion, one also has to
show that all conditions preceding x are true, i.e. one has to
find the first failing condition. For all three types of disjunc-
tions, we have no alternative but to show that all its condi-
tions are false.

7 Representing the Logic of Schemata
As we have discussed in Sec. 4, the inner opinions needed
to ascertain the truth of a statement A shall be the tasks
contained in methods decomposing A. Which assertions we
have to check in inner opinions and how their result influ-
ences the truth of the overall statement A is determined by
A’s schema. In our modelling, the method decomposing A
will always contain tasks for all conditions B1, . . . , Bn con-
tained in the schema. If, in a concrete opinion, a specific
condition Bi does not have to be checked, it will be decom-
posed using an empty decomposition method – denoting that
it should not be part of the opinion. Hence, what remains is
to provide a mechanism for suitably modelling the logical
structure of the schema and its implications on the assertions
to be checked in an opinion.

Representing Negation as a Parameter
Next, we note that checking a specific assertion, i.e. an ab-
stract task, may either be done with the objective of proving
the assertion or proving the negation of the assertion. Thus
it might seem sensible to add a parameter to each abstract
task, denoting the mode in which it is to be checked. If we
do this though, every task inside a method will need such
a parameter. Next, these parameters must be separate vari-
ables for each condition in a schema, as if we check a con-
junction or the negation of a disjunction, not all conditions
are checked with the same objective. Assertions in the meth-
ods precondition would have to ensure that the variables are
set correctly for each of the subtasks. We don’t use such a
modelling for three reasons. First, it unnecessarily increases
the size of the ground instantiation as the variable determin-
ing the objectives for each Bi. Second, such a modelling
may make the model harder to solve when using grounded
progression search algorithms, which are currently one of
the best algorithms for HTN planning (Höller et al. 2018).
Since the variables are part of the decomposition method,
we have to guess which of the conditions B1, . . . , Bn will
hold when we apply the decomposition method. With the
modelling we propose below, we defer this decision until the

point where we actually check each of the individual con-
ditions Bi. Third, the rules on determining the conditions’
objectives have to be encoded once per method, thus clut-
tering the model with unnecessary repetitions and making it
less readable. With the method that we propose below, these
rules are encoded only once in the domain and remain static,
e.g. if new material law is added to the domain – thus easing
modelling significantly.

Representing Negation as a State Variable
Instead of using parameter variables to denote the objective
with which we check each of the conditions B1, . . . , Bn,
we use a mode that we set in the state. We model the mode
as a predicate (mode ?m). Each abstract task A (i.e. its
decomposition) will check the objective set out by the mode
which holds in the state directly before A. After A has been
checked in the given mode, our modelling sets the current
mode back to the mode with whichA has been checked. If it
is not possible to check the assertion ofA in the given mode,
it will not be possible to decompose it into an executable
plan. This way, we can guarantee that the created opinion
is in itself consistent: a valid plan can only be found if the
result matches the assertion that was set out in the beginning.
Further, it allows us to create planning problems where the
result of the opinion is unknown. Here, the initial abstract
task is a dummy, that decomposes into the actual premise of
the opinion preceded with a primitive action that will either
set to mode to check the premise positively or negatively.

In addition to two modes representing objectives, we in-
troduce three additional modes we use for controlling which
conditions are checked for negated conjunctions and non-
negated disjunctions. We use the following five modes with
their respective meaning:
• yes – we attempt to show that the condition holds
• no – we attempt to show that the condition does not hold
• indifferent – we have to show that the condition

holds or not, but the result is irrelevant
• ignore – we do not have to consider this condition, but

do not yet know whether the main statement A is true nor
not

• done – we do not have to consider this condition, but
already know whether the main statement A holds

Any method for A uses its method precondition to de-
termine the current mode via a precondition (mode
?initMode). If ?initMode is yes, we know that we
have to check the assertion represented by A positively, if it

Proceedings of the 3rd ICAPS Workshop on Hierarchical Planning (HPlan 2020)

5



is no negatively. If the mode is indifferent, it does not
matter whether we check the statement positively or nega-
tively. These three cases are handled by the same decompo-
sition method. This way we have to model the schema for A
only once in the planning domain and eliminate unnecessary
redundancy. The method precondition of this method checks
that ?initMode is either yes, no, or indifferent.

If ?initMode is either ignore or done, we don’t have
to check the assertion at all. Thus for these cases, the plan-
ning domain contains an empty decomposition method (i.e.
one without subtasks) that checks whether ?initMode is
either ignore or done in its precondition. In total, we
create only two decomposition methods for each statement
A, one for the case where we actually have to execute A’s
schema and one where we completely forgo checking A.
The first type of methods actually applying A’s schema will
contain a subtask for each of the conditions B1, . . . , Bn.
Whether any condition Bi will be checked in a concrete
opinion is determined by the method applied to it – if the
second type of method is applied, it will not be contained in
the opinion. This way, we can model the schemata fully in-
side a single method – without any complicated if-then-else
structure in the method.

Methods with Mode-Checking
When checking an assertionA via a method of the first type,
we have to set the correct checking-mode before each of
the tasks representing the conditions B1, . . . , Bn contained
in A’s schema. The corresponding tasks then have to per-
form their checks according to the set mode. Once the task
has been executed, we have to set the mode for the next
task, execute it, and repeat until all conditions of the asser-
tion’s schema have been handled. Determining which mode
can be used for each of the subtasks depends on multiple
factors: the type of the logical connector that the schema
uses, the mode of the assertion we are currently checking,
and the mode with which the previous subtasks have been
checked. Firstly, instead of basing the result on the modes
for all previous subtasks, we only consider the last one. Its
mode will have aggregated all necessary information about
the already checked conditions. For example, if a condition
Bi was successfully checked with the mode yes in a con-
junction, all previous conditions Bj with j < i were also
checked successfully with the mode yes. Here, the mod-
elling capabilities of HTN planning come into play: The
method that has checked the previous condition will have
set the mode back to the mode it was “called”. Via this me-
chanic, we know in A’s method the mode with which the
subtask was called without the need for adding additional
variables to the method – which would increase the size of
the model’s grounding and make the method itself less read-
able. Secondly, we use the variable ?initMode to deter-
mine the checking mode of A itself. This is – once again –
only possible as we are using HTN planning. It allows us to
enforce that a given set of actions – those setting the modes
– share a common parameter. This essentially forms a kind
of a brace-like structure, i.e. a context-free structure, which
are not expressible with classical planning, but with HTN
planning (Höller et al. 2014).

Thus the mode that should be set of a condition Bi de-
pends on: (1) the logical connector, (2) the overall mode of
A, and (3) the mode that was set to Bi−1. In Tab. 1 we show
how we set the mode for Bi depending on these three in-
puts. We additionally show how we set the mode initially
(the start mode). Lastly, we list which mode is required to
hold after the last condition Bn has been handled. With this
check, we ensure that in the case of a positively checked
disjunction one of the conditions was checked with the yes
mode and for a negatively checked conjunction that one of
the conditions was checked with the no mode. For the re-
verse cases (positive conjunction and negative disjunction),
the correct modes are already enforced by the mode setting.

To set the modes we use a primitive action (set-mode
?logic ?initMode) implementing the state transi-
tion function of Tab. 1. Here ?logic is a vari-
able that can be instantiated with four constants: one
for each of the four types of logical connectors. We
use actions (start-mode ?logic ?initMode) and
(end-mode ?logic ?initMode) for setting the ini-
tial mode, checking the final mode and setting the mode
after the last condition back to ?initMode. We add the
set-mode action prior to every task Bi in a method and
start-mode and end-mode as the first and last tasks in
each method.

The mode-setting in Tab. 1 assumes that the conditionsBi

are occurring positively in the schema. For handling nega-
tion, we use an additional action invert. If executed, it
will change the yes mode into no and vice versa – effec-
tively implementing a negation of a specific check. It will
not alter the mode if it is set to anything other than yes or
no. In total, if schema states that A holds if either B, not C,
or D hold, its method will contain the following tasks and
actions:
1. (start-mode disj-seq ?m)
2. (set-mode disj-seq ?m)
3. (B)
4. (set-mode disj-seq ?m)
5. (invert)
6. (C)
7. (invert)
8. (set-mode disj-seq ?m)
9. (D)
10. (end-mode disj-seq ?m)
If we are to use this method in a setting where neither B, nor
C, nor D holds, A will hold. The execution and mode-setting
in this case is shown in Fig. 2.

8 Modelling
We have modelled (parts of) German Warranty Law using
our methodology. Our modelling solves the two questions
we set out for our example case in the beginning of the paper.

For this, we also had to model parts of connected areas
of civil law, e.g. parts of contracts law, or consumer rights.
The domain currently consists of 42 abstract tasks, 84 lifted
decomposition methods, and 35 lifted primitive actions.
The model is available at https://github.com/galvusdamor/
htnlaw. The example case we’ve outlined in the beginning
is solved by an SAT-based HTN planner (Behnke, Höller,
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target last conjunction ordered disjunction free disjunction complete disjunction
yes start mode yes no ignore no
no start mode yes no no no
yes yes yes done done indifferent
yes no – yes/no – yes/no
yes ignore – – ignore/yes –
yes done – done done –
yes indifferent – – – indifferent
no yes yes/no – – –
no no done no no no
no done done – – –
yes end mode yes yes/done yes/done yes/indifferent
no end mode no/done no no no
indifferent end mode yes/no/done yes/no/done yes/no/done/ignore yes/no/indifferent

Table 1: State transitions for modes. Start mode indicates the mode in which checking starts while the last two lines (denoted
with “end mode”) denotes the states in which checking may end with success. Dashes show transitions that are not allowed.

S 0
(m yes)

start-mode

S 1
(m no)

set-mode

S 2
(m no)

B

S 3
(m no)

set-mode

S 4
(m yes)

invert

S 5
(m no)

C

S 6
(m no)

invert

S 7
(m yes)

set-mode

S 8
(m done)

D

S 9
(m done)

end-mode

S 10
(m done)

Figure 2: Structure of the evaluation of the assertion: A, if either B, not C, or D. The disjunction is an ordered disjunction. We
assume that neither B, C, nor D hold, i.e. A holds because C does not hold. The initial objective is to show that A holds. S i
denotes that ith state, while (m x) indicates the mode x set in this state.

and Biundo 2019a; 2018; 2019b) in 13.7 seconds on an Intel
i5-4300U.

9 Conclusion and Outlook
In this paper, we showed that the structure of German legal
opinions can be formalised in terms of HTN planning. This
formalisation represents objectives to be checked as abstract
tasks and uses decomposition methods to check whether the
assertion holds using the established schemata for doing so.
We showed how the various types of logical structures oc-
curring in these schemata can be modelled within decom-
position methods by exploiting the high expressiveness of
HTN planning. The presented modelling relies on a prior
formalisation of the facts of a given case in terms of appro-
priate first order atoms. In the future, we may use the mod-
elled domain to enable a semi-supervised formalisation of
subsumption. We may, in turn use this to assist law students
in learning to structure their thoughts and to write opinions
themselves. For example, we could verify that the structure
of options written by students complies with the schemata
using HTN plan verification (Behnke, Höller, and Biundo
2017; Barták, Maillard, and Cardoso 2018). Based upon the
detected errors, we could develop techniques to provide use-
ful hints to the students on how to improve their opinions.
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Abstract

Landmarks are state features that need to be made true or
tasks that need to be contained in every solution of a planning
problem. They are a valuable source of information in plan-
ning and can be exploited in various ways. Landmarks have
been used both in classical and hierarchical planning, but
while there is much work in classical planning, the techniques
in hierarchical planning are less evolved. In this paper we in-
troduce a novel landmark generation method for Hierarchical
Task Network (HTN) planning and show that it is sound and
incomplete. We show that every complete approach is as hard
as the underlying HTN problem. Since we make relaxations
during landmark generation, this means NP-hard for our set-
ting (while our approach is in P). On a widely used bench-
mark set, our approach finds more than twice the number of
landmarks than the approach from the literature. Though our
focus is on landmark generation, we show that the newly dis-
covered landmarks bear information beneficial for solvers.

1 Introduction
Two widely used approaches to planning are classical plan-
ning and Hierarchical Task Network (HTN) planning. In
classical planning, the environment is described using a set
of (propositional) state features that are modified by actions,
which define valid state transitions. The objective is to find a
sequence of actions transforming the initial state of the sys-
tem into one in which certain goal features hold.

In HTN planning there are two kinds of tasks: actions like
in classical planning (also called primitive tasks) and ab-
stract tasks. The latter are not applicable directly, but are
decomposed into other (primitive or abstract) tasks by us-
ing decomposition methods. The objective in HTN plan-
ning is not to fulfill a state-based goal condition, but to
find an executable decomposition of given abstract tasks.
Since there is (usually) more than one method for an ab-
stract task, the hierarchy implies a second combinatorial
problem because a planner has to choose the “right” method
for a certain task. This makes HTN planning more expres-
sive (Erol, Hendler, and Nau 1996; Geier and Bercher 2011;
Höller et al. 2014; 2016). The decomposition process can be
seen as an AND/OR tree (Ghallab, Nau, and Traverso 2004;
Kambhampati, Mali, and Srivastava 1998). Starting with the
initial task, a planner chooses a single method (i.e. abstract

tasks form OR nodes) and has to include all subtasks into
the plan (i.e. methods form AND nodes), and so on.

A concept that has been successful especially in classical
planning is that of landmarks (LMs). LMs are state features
(or actions) that are made true (contained) in every solution.
It was first used for problem decomposition (Porteous, Se-
bastia, and Hoffmann 2001; Hoffmann, Porteous, and Sebas-
tia 2004) and later for creating non-admissible (see e.g. Zhu
and Givan (2003), Richter, Helmert, and Westphal (2008),
and Richter and Westphal (2010)) and admissible heuristics
for heuristic search (see e.g. Karpas and Domshlak (2009)
or Helmert and Domshlak (2009)). LMs have also been in-
troduced in hierarchical planning. First in form of task LMs
in hybrid planning (Elkawkagy, Schattenberg, and Biundo
2010) (an extension of HTN planning), later in form of fact
LMs in HGN planning, a formalism where the hierarchy is
defined on goals, not on tasks. The former can directly be
applied to HTN planning and will be the baseline for our ap-
proach. While the latter can apply LM generation techniques
from classical planning directly (Shivashankar et al. 2013;
2016a; 2016b; Shivashankar, Alford, and Aha 2017), the
presented techniques are not applicable to HTN planning.
We summarize landmark-related work in the context of
HGN planning in Section 5.

Work on LMs can be divided into two orthogonal cate-
gories (Keyder, Richter, and Helmert 2010): LM utilization
showing how to exploit LM information, and LM genera-
tion, showing how to find LMs. We focus on the latter.

Based on techniques from classical planning, we intro-
duce a novel approach for LM generation in HTN planning
that elegantly combines the extraction of fact, action, and
method LMs. It dominates the existing work (finding at least
the same LMs). Our approach is sound and incomplete. We
further show that every (sound and) complete approach is as
hard as the underlying planning problem, i.e., in our setting
– delete-effects and ordering-relations of the HTN model are
ignored during generation – NP-hard (while our approach is
in P). On a widely used benchmark set we find more than
twice the number of LMs than related work. Though our fo-
cus is on LM generation, we further show that the additional
LMs bear valuable information for search guidance.

Proceedings of the 3rd ICAPS Workshop on Hierarchical Planning (HPlan 2020)

9



2 Formal Framework
A classical planning problem P is a tuple (F,A, s0, g, δ). F
is a set of propositional state features (or facts) that is used
to describe the environment. A state s ∈ 2F is given by
those state features that hold in it, all others are supposed to
be false. s0 ∈ 2F is called the initial state and g ⊆ F is
the goal condition. A is a set of action names. The functions
δ = (prec, add , del) with prec, add , del : A → 2F map
action names to a set of state features defining the action’s
precondition, add effects, and delete effects, respectively. An
action a is applicable in a state s ∈ 2F if and only if its
precondition is contained in the current state, prec(a) ⊆ s.
When a is applicable in s, the state s′ resulting from its ap-
plication is defined as s′ = (s \ del(a)) ∪ add(a). A se-
quence of actions (a1, a2, . . . , an) is applicable in a state s
when action ai with 1 ≤ i ≤ n is applicable in state si−1,
where si for 1 ≤ i ≤ n results from applying the sequence
up to action i. The state si is called the state resulting from
the application. All states s ⊇ g are called goal states. A
plan (or solution) is a sequence of actions applicable in s0
that results in a goal state.

We now extend classical problems to HTN problems
based on the formalism by Geier and Bercher (2011). An
HTN planning problem P = (F,A,C,M, s0, tnI , g, δ) ex-
tends a classical problem by a decomposition hierarchy on
the things to do, the tasks. Tasks are divided into primi-
tive tasks equal to actions in classical planning, and abstract
tasks that can not be applied directly but need to be decom-
posed first. Let A and C1 be the sets of primitive and ab-
stract tasks, respectively. We assume that their intersection
is empty and call the set of all task names N = A ∪ C.

Tasks are organized in task networks. A task network is a
triple tn = (T ,≺, α), where T is a set of identifiers (ids),
≺ a strict partial order on the ids, and α a mapping from ids
to actual tasks α : T → N . This definition allows having a
certain task more than once in a task network.

Planning starts with a special task network defining the
objective of the problem called initial task network tnI .

The decomposition rules are called (decomposition) meth-
ods M . They map a task c ∈ C to a task network, i.e. they
are pairs (c, tn). When a method (c, tn) is applied to a task
t with α(t) = c in a task network, the task is deleted from
the network, the tasks defined in tn are added and they in-
herit the ordering relations that have been present for t. A
task network tn1 = (T1,≺1, α1) is decomposed into a task
network tn2 = (T2,≺2, α2) by a method (c, tn), if tn1 con-
tains a task t ∈ T1 with α1(t) = c and there is a task net-
work tn ′ = (T ′,≺′, α′) equal to tn but using different ids
(i.e. T1 ∩ T ′ = ∅). tn2 is defined as follows:

tn2 = ((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′)
≺D = {(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 6= t ∧ t2 6= t}

We will write tn1
−−→
t,m tn2 to denote that tn1 can be trans-

formed into tn2 by decomposing a task t contained in tn1

1C is short for compound, a common synonym for abstract.

using the method m. We will write tn1 →∗ tn2 to denote
that a task network tn1 can be decomposed into a task net-
work tn2 by using a (possibly empty) sequence of methods.

The elements s0, g, and δ are defined as before. The ob-
jective of the problem is to find an executable decomposi-
tion of tnI = (TI ,≺I , αI) by adhering the decomposition
methods resulting in a state satisfying g. More formally, a
task network tnS = (TS ,≺S , αS) is a solution if and only
if (1) tnI →∗ tnS , i.e. tnS can be created by decomposing
tnI , (2) All tasks in tnS are primitive, and (3) There is a
sequence of all tasks satisfying the ordering constraints ≺S ,
applicable in s0 that results in a goal state.

An HTN planning system is not allowed to add tasks apart
from the decomposition process. Since we defined the HTN
problem as an extension of a classical problem, it contains a
state-based goal definition as well. Specifying such a goal
is optional, and is indeed not required from a theoretical
perspective as it can easily be compiled away (Geier and
Bercher 2011). Our LM generation procedure works fine
without a state-based goal definition and most problem in-
stances in the used benchmark set do not contain one.

We now define various types of landmarks. Our defini-
tion for task landmarks (Def. 1) is essentially equivalent to
Def. 3 of Elkawkagy et al. (2012), but adapted to our for-
malism. Most notably, the original formalization is based on
a lifted formalization (whereas the respective landmarks are
still required to be ground). Def. 2 is new.

Definition 1 (Task Landmark). A task landmark is a task
name n ∈ N such that every sequence of decompositions
leading to some solution tnS contains a task network in-
cluding the landmark. Thus, each decomposition sequence
from tnI to tnS has the form tnI →∗ tn →∗ tnS , where
tn = (T ,≺, α) with t ∈ T and α(t) = n.

Definition 2 (Method Landmark). A method landmark is a
method m ∈ M such that every decomposition sequence
to every solution tnS contains two task networks tn1 =
(T1,≺1, α1) and tn2 such that there is a task t ∈ T1 and it
holds that tnI →∗ tn1

−−→
t,m tn2 →∗ tnS .

Our definition of fact landmarks is a canonical adaptation
of fact landmarks from classical planning (Porteous, Sebas-
tia, and Hoffmann 2001).

Definition 3 (Fact Landmark). A fact landmark is a fact
f ∈ F such that for every solution tnS , every lineariza-
tion executable in s0 in line with the ordering and resulting
in a goal state there is an intermediate state si with f ∈ si.

3 Landmark Generation in HTN Planning
The concept of landmarks in HTN-like planning has first
been studied by Elkawkagy, Schattenberg, and Biundo
(2010). Here, landmarks have not been extracted from states,
but from the task hierarchy. They introduced a technique to
identify tasks that are contained in all methods (c, tn) ∈ M
decomposing a certain task c by computing the intersection
of their subtasks. These tasks are called mandatory tasks.
However, the empirical evaluation in their paper evaluates
the impact of a domain model reduction that is done simul-
taneously to the mandatory task generation.
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In follow-up work (Elkawkagy et al. 2012) they tested
how the computed landmark information can be exploited
by introducing and evaluating landmark-based search strate-
gies. These search strategies are tailored to the deployed
search algorithm, which prioritizes different methods that
belong to the same abstract task similar to SHOP (Nau et
al. 2003; Goldman and Kuter 2019). However, whereas the
SHOP systems rely on depth-first search and the order of the
methods is specified in the model, Elkawkagy et al.’s sys-
tem uses informed search strategies and computes the meth-
ods’ order based on the mandatory tasks. The core idea is
to prioritize methods with fewer tasks, whereas only non-
mandatory tasks are considered (as mandatory tasks have to
be achieved anyway). So, their work did not yet define a
landmark heuristic that can be exploited by standard heuris-
tic HTN planners.

Bercher, Keen, and Biundo (2014) then introduced these
ideas to standard heuristic search. They showed how land-
marks of a planning task can be computed based on manda-
tory tasks and used these landmarks for an admissible land-
mark counting heuristic. To show in which way we extend
their landmark heuristic (Bercher, Keen, and Biundo 2014,
Def. 1), we reproduce their definition, but simplified and
adapted to our notation:

Definition 4 (Mandatory Task-based Landmarks). Let P =
(F,A,C,M, s0, tnI , g, δ) and tnI = (TI ,≺I , αI) be an
HTN planning problem. For a primitive task a ∈ A, we de-
fine the set of mandatory tasks as MT (a) = ∅ and for an
abstract task c ∈ C it is defined as follows:

MT (c) =
⋂

(c,(T ,≺,α))∈M

⋃

t∈T
α(t)

A set of MT landmarks LMmt for P can be computed by:

1 LMmt ← ⋃
t∈TI

αI(t)

2 while LMmt changes do
3 LMmt ← LMmt ∪⋃

n∈LMmt MT (n)

The generation method collects the tasks contained in all
methods that belong to the same abstract task. Thus all tasks
that get introduced at deeper levels of abstraction cannot be
found unless all methods share some abstract task(s). This,
however, could be improved by lookahead techniques as
done in early approaches in classical planning.

4 AND/OR Landmarks in HTN Planning
We now introduce HTN landmark generation based on
AND/OR graphs, adapting a landmark technique from clas-
sical planning to our setting. A main problem when applying
techniques from classical planning to HTN planning is the
absence of a state-based goal. Since the objective in classi-
cal planning is given in terms of such a goal, techniques like
landmark extraction usually rely on it. When an HTN prob-
lem also includes one, techniques could be directly applied
to it, but it is usually not present. One approach to apply
classical techniques would be to extract task landmarks for

the HTN model and calculate the state-based landmarks of
the preconditions of primitive task landmarks.

However, we introduce a more elegant approach that
smoothly combines the generation of task, method, and fact
LMs in HTN models based on the approach of Keyder,
Richter, and Helmert (2010). Their technique extracts LMs
from an AND/OR graph representation for delete-relaxed
classical planning problems that was introduced by Mirkis
and Domshlak (2007). We first introduce the approach of
Keyder, Richter, and Helmert (Sec. 4.1), and then show that
it can nicely be adapted to HTN planning (Sec. 4.2).

4.1 Extracting Landmarks in Classical Planning
Using AND/OR Graphs

We use the definition of AND/OR graphs by Keyder,
Richter, and Helmert (2010, p. 2):
Definition 5 (AND/OR Graph). An AND/OR graph G =
(VI , Vand, Vor, E) is a directed graph with vertices V =
VI ∪ Vand ∪ Vor and edges E, where VI , Vand and Vor are
disjoint sets called initial nodes, AND nodes, and OR nodes,
respectively. A subgraph J = (V J , EJ) of G is said to jus-
tify VG ⊆ V if and only if the following conditions holds:
1. VG ⊆ V J
2. ∀a ∈ V J ∩ Vand : ∀(v, a) ∈ E : v ∈ V J ∧ (v, a) ∈ EJ
3. ∀o ∈ V J ∩ Vor : ∃(v, o) ∈ E : v ∈ V J ∧ (v, o) ∈ EJ
4. J is acyclic

Let P = (F,A, s0, g, δ) with δ = (prec, add , del) be
a delete-relaxed (DR) classical planning problem (i.e., for
all a ∈ A holds del(a) = ∅). It can be understood as
the following AND/OR graph (Mirkis and Domshlak 2007;
Keyder, Richter, and Helmert 2010):
Definition 6 (AND/OR representation of delete-relaxed
classical problems). Let G = (VI , Vand, Vor, E) with
VI = s0, Vand = A, and Vor = F \ s0. The set of edges
is defined as E = {(a, f) | a ∈ A, f ∈ add(a)} ∪ {(f, a) |
a ∈ A, f ∈ prec(a)}.

Landmarks in these graphs are characterized by the fol-
lowing definition (Keyder, Richter, and Helmert 2010):
Definition 7 (Landmarks in AND/OR graphs).

LM (v) = {v} for v ∈ VI ,
LM (v) = {v} ∪

⋂

u∈pred(v)
LM (u) for v ∈ Vor,

LM (v) = {v} ∪
⋃

u∈pred(v)
LM (u) for v ∈ Vand,

where pred(v) is the set of predecessors of v in G, i.e.
pred(v) = {u | (u, v) ∈ E}.

The set of landmarks for a problem is then defined as the
set of landmarks for the nodes representing the goal defini-
tion g, i.e. VG = g and we are looking for

⋃
n∈VG

LM(n).
Keyder, Richter, and Helmert calculate the maximal set

fulfilling these equations in P by initializing the landmark
sets of all nodes apart from VI with all vertices of the graph,
i.e. the full landmark set. Nodes in VI are initialized with
its own value. Then the equations given before are used as
update rules for the sets until a fixpoint is reached.
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4.2 Extracting Landmarks in HTN Planning
Using AND/OR Graphs

From a high-level perspective, what is encoded in the
AND/OR graph constructed above is that for every state fea-
ture that is in the goal condition, there must be (at least) one
action that has it as an add effect. When an action is in the
graph, its preconditions must also be fulfilled, i.e. there must
be at least one action (for each precondition fact) with this
state feature as add effect, and so on (until the state features
in the initial state are reached).

When we now have a look at HTN planning, we see a
similar structure: for each abstract task in the initial task
network, there must be a method decomposing it. When
a method is in the graph, all its subtasks must also be in
the graph, and so on (until all tasks are primitive). This
similarity to AND/OR graphs has been pointed out be-
fore (Kambhampati, Mali, and Srivastava 1998; Ghallab,
Nau, and Traverso 2004, Chapter 11).

However, we do not need to stop at this point: when we
have reached an action, we know that its preconditions need
to be fulfilled. So there must be actions that have those state
features as add effects. To reflect this in landmark genera-
tion, we do not replace the definition of the AND/OR graph
given before, but extend it in the following way.

Definition 8 (AND/OR representation of delete-relaxed
HTN problems). Let P = (F,A,C,M, s0, tnI , g, δ) be
an HTN planning problem. We define the corresponding
AND/OR graph as follows:
G = (VI , Vand, Vor, E) with VI = s0, Vand = A ∪M 2

and Vor = F \ s0 ∪ C. The set of edges is defined as E =

{(a, f) | a ∈ A, f ∈ add(a)} ∪
{(f, a) | a ∈ A, f ∈ prec(a)} ∪
{(m, c) | m = (c, tn) ∈M} ∪
{(n,m) | m = (c, (T ,≺, α)) ∈M, t ∈ T , α(t) = n}
Now we generate the landmarks by using the same gener-

ation mechanism as Keyder, Richter, and Helmert. Since the
size of the graph is linear in the size of the model, it trivially
follows that this computation is in P. The overall set of LMs
is then based on hierarchy and (if present) state-based goal:

Definition 9 (HTN Landmarks). Let tnI = (TI ,≺I , αI) be
the problem’s initial task network. The overall set of HTN
and/or landmarks LM ao is defined as

LM ao =
⋃

v∈VG

LM(v) with VG =
⋃

t∈TI

{αI(t)} ∪ g

The example given in Figure 1 illustrates the interplay of
hierarchy and state during landmark generation. The initial
task network contains a single abstract task T that may be
decomposed using the methods m1 or m2, both introducing
an action b. The abstract task S can be decomposed into an
action a using m3. There are two state features x and z. The
former is included in the initial state (s0 = {x}) and pre-
condition of a. The latter is the precondition of b. When we

2Wlog., we assume that A ∩M = ∅ and F ∩ C = ∅.

T

S bz

T

bz

S

ax z

m1 m2 m3

Figure 1: Simple HTN domain. S and T are abstract tasks,
m1 to m3 methods, a and b actions, and x and z state fea-
tures. T might be decomposed bym1 into S and b, or bym2

into b. S can be decomposed by m3 into a.

zx

a b

m3 m2

S

m1

T
LM (x ) = {x}
LM (z ) = {a, x, z}
LM (a) = {a, x}
LM (b) = {a, b, x, z}

LM (m1 ) = {a,m3, S, x} ∪ {a, b, x, z} ∪ {m1}
= {a, b,m1,m3, S, x, z}

LM (m2 ) = {a, b,m2, x, z}
LM (m3 ) = {a,m3, x}
LM (S ) = {a,m3, S, x}
LM (T ) = ({a, b,m1,m3, S, x, z} ∩ {a, b,m2, x, z}) ∪ {T}

= {T, a, b, x, z}

Figure 2: AND/OR graph of our example given in Fig. 1.
Circles are OR nodes, boxes are AND nodes, and the
diamond-shaped node labeled x is the only initial node.

apply the mandatory task landmark generation, we end up
with the landmark set {T, b}.

The AND/OR graph resulting from the problem is given
in Figure 2. The resulting landmark sets are given at the
right. Notably, though it is not even reachable when using
m2, we end up with a inside our landmark set, since it is the
only action that fulfills the precondition of the landmark b.

4.3 Theoretical Properties
Before we state the properties of our approach, let us state
theoretical properties of landmarks in general. Similar to
classical planning, we will see that deciding whether a task,
method, or fact is a landmark is as hard as planning itself.

Theorem 1. Let P be an HTN planning problem. Let t be a
task,m be a method, and f a fact. Deciding whether t,m, or
f is a landmark is exactly as hard (with matching upper and
lower bounds of the respective complexity class) as deciding
the plan existence problem for P .

Proof. Our proof is a straight-forward adaptation of the
corresponding proof by Hoffmann, Porteous, and Sebas-
tia (2004, Thm. 1) for classical planning landmarks.

Hardness. We will introduce a new artificial initial ab-
stract task cI with two decomposition methods. The first,
m1, decomposes cI into the original initial task network of
P , whereas the other,m2, decomposes it into a new task net-
work that solves the problem. For this, m2 decomposes into
an abstract task t, which in turn decomposes (i.e., with yet
another method) into a primitive task t′. t′ uses an empty
precondition, a new “dummy” fact f as effect, as well as g
as further effects. t′ does not use negative effects. Note that
we could have put t and t′ into the same task network, thus
saving another “decomposition level” and method, but we
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wanted to keep the size of new task networks limited to 1
so we don not potentially change properties of the problem
we reduce from (like number of tasks per task network, their
form of ordering constraints, or the “position” of said task,
which may all influence the computational complexity).

Clearly, m2, t (abstract), t′ (primitive), and f are land-
marks if and only if P is unsolvable. Note that determining
the unsolvability is as hard as determining the solvability, as
those two problems are complimentary to each other.

Membership. Similar to Hoffmann, Porteous, and Sebas-
tia (2004, Thm. 1), we test whether the problem remains
solvable if we ignore all parts of the model that “relate” to
the landmark(s) in question. I.e., in case of a method we just
remove it. In case of a task (abstract or primitive), we remove
all task networks and methods that contain them. And in case
of a fact landmark, we remove all actions (i.e., again remov-
ing all methods that introduce it) that add it. Decide the re-
sulting problem. The task, method, or fact is a landmark if
and only if the respective problem is not solvable.

Using that theorem we can thus deduce the computational
hardness of determining whether a task, method, or fact is
a landmark for many standard HTN planning problems. We
only mention the most important ones here, but as mentioned
above our theorem is more general.

Corollary 1. Let P be an HTN planning problem. Deciding
whether a task, method, or fact is a landmark of P is unde-
cidable. If P is totally ordered, its complexity is EXPTIME-
complete. If it is delete-relaxed it is NP-complete.

Proof. Follows from Thm. 1 in conjunction with the results
for the general case (Erol, Hendler, and Nau 1996; Geier and
Bercher 2011), totally ordered problems (Alford, Bercher,
and Aha 2015a), and delete-relaxed problems (Alford et al.
2014; Höller, Bercher, and Behnke 2020).

We can conclude that any complete landmark extrac-
tion technique for delete- and ordering-relaxed HTN prob-
lems cannot run in polynomial time unless P=NP (Höller,
Bercher, and Behnke 2020).

Some of our further results (i.e., their proofs) rely on
the so-called Decomposition Tree (Geier and Bercher 2011),
which we formally introduce next. It is a formal representa-
tion of a task network and it deviation from the initial task.3

Definition 10 (Decomposition Tree). Given an HTN plan-
ning problem, a Decomposition Tree (DT) is a tuple g =
(V,E,≺, α, β). V and E are the vertices and edges of a di-
rected tree. ≺ is a strict partial ordering on V . α : V → N
maps the vertices to (primitive or abstract) tasks from the
problem. Vertices that are labeled with abstract tasks are
mapped to methods by β : V →M .

A DT is valid if its root is labeled with the initial task of
the problem and for every vertex v labeled with an abstract
task c, the following conditions hold:

1. It is labeled with a method applicable to c, i.e. β(v) =
(c, tnm).

3Problems with an initial task network can trivially be compiled
into one with just an initial task (Geier and Bercher 2011).

2. The task network induced by the children of v in g differs
from tnm only in the task identifiers.

3. For all vertices v′ ∈ V , the ordering with respect to the
children of v is like defined for HTN planning, i.e. for each
child v′′ the following conditions hold:
(a) if (v, v′) ∈ ≺ then (v′′, v′) ∈ ≺
(b) if (v′, v) ∈ ≺ then (v′, v′′) ∈ ≺

4. ≺ does only contain ordering relations enforced by the
conditions 2 and 3.
Note that there exists a valid decomposition tree for ev-

ery solution of an HTN problem (Geier and Bercher 2011,
Prop. 1), since they simply represent the underlying hierar-
chy of the respective task network. We can now discuss some
properties of the new approach.
Lemma 1. Let P be an HTN planning problem, tn a solu-
tion task network, and dt its decomposition tree. Then, there
exists a justification for the initial task of the AND/OR graph
(given in Definition 8) representing dt.

Proof. Consider the following observations:

1. Task Insertion – Assume we have a justification for an
AND/OR graph representation of a classical problem. As-
sume we want to add additional actions. This results in
more AND nodes, but as long as we support their precon-
ditions by other action nodes or the initial state, we get
another valid justification.

2. Eliminating Cycles – Geier and Bercher (2011, Sec. 4.1
and 4.2) have shown that – when allowing an HTN plan-
ner to insert tasks apart from the decomposition process –
cycles in the decomposition structure are not necessary
and can be removed. When removed actions have been
needed to make the resulting sequence executable, they
can be reintroduced via task insertion. While Geier and
Bercher use this result to show an upper bound of the size
of task networks (for this special class of HTN planning
problems), we need it to show the existence of justifica-
tions without cycles.

Given a decomposition tree, we know by Obs. 2 that (a) there
is a modified tree that (a) contains a subset of the tasks of g,
that (b) does not contain cyclic decompositions and that (c)
the contained actions can be made executable by task inser-
tion. Now consider the basic structure of a DT: We start by
adding all tasks contained in the (acyclic) DT to the justi-
fication. Therefore we know that condition 1 for the justifi-
cations is fulfilled. For every abstract task, DT it explicitly
contains the method used for its decomposition, i.e., we can
use this method to add the edges from the abstract task node
to the method node, and from the method node to the subtask
nodes. For the hierarchical part of the graph, the latter fulfills
condition (2) and the former condition (3) of the justification
definition. Since our decomposition structure is acyclic, we
know that the new graph is.

What is left to show is that there is a justification for the
part of the graph representing the state transition system. By
Obs. 1 we know we can “add actions” to fulfill the conditions
for a justification. Since we started with a valid decomposi-
tion tree before we removed cycles, we know that there is a
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Figure 3: HTN domain without delete-effects and ordering
relations. S and T are abstract tasks, a–e are actions, m1–
m4 are methods, and x–z are state features.

LM (x ) = {x}
LM (a) = {a, x}
LM (b) = {b, x}
LM (c) = {c, x}
LM (d) = {d, x}
LM (e) = {a, e, x, y, z}
LM (y) = {y, a, x}
LM (z ) = {z, x} = {z} ∪

({b, x}∩{c, x})

LM (m1 ) = {m1, a, x}
LM (m2 ) = {m2, b, x}
LM (m3 ) = {m3, c, x}
LM (m4 ) = {m4, d, x}
LM (S) = {S, x} = {S} ∪

({m1, a, x}∩{m2, b, x})
LM (T ) = {T, x} = {T} ∪

({m3, c, x}∩{m4, d, x})

Figure 4: Landmarks found on the domain given in Figure 3.

set of actions that makes the sequence applicable, thus there
is a valid justification for the state transition system.

Theorem 2 (Soundness). LM ao landmarks are landmarks
for the underlying HTN planning problem.

Proof. The approach by Keyder, Richter, and Helmert ex-
tracts landmarks for AND/OR graphs, i.e., nodes that have
to be in every justification. By Lemma 1, there is a justifi-
cation corresponding to every DT. Since every justification
includes the nodes, this holds for every one that represents a
DT and every DT includes the nodes.

A second question is whether the approach is complete.
Obviously, delete effects and ordering relations are not rep-
resented in the graph. Thus all LMs depending on delete-
effects and/or the ordering can not be found. This leaves
the question whether all LMs apart from these are found for
delete- and ordering-free (DOF) HTN problems.
Theorem 3 (Completeness). LM ao does not find all LMs in
DOF HTN planning problems.

Proof. Consider the HTN domain given in Figure 3. The ini-
tial task network (tnI ) contains the abstract tasks S and T ,
and the action e. The initial state is s0 = {x}. All tasks are
unordered. S can be decomposed by m1 into the action a,
or by m2 into the action b. T can be decomposed by m3 and
m4 into the actions c and d, respectively.

Since e is in tnI , it is necessarily in every solution. To
make it executable, y needs to be fulfilled, thus S needs to
be decomposed using m1 to include a in the plan, which is
the only way to make y true. z is also precondition of e, i.e.
b or c must be contained in every plan. However, since S
needs to be decomposed into a, c is the only option to fulfill
z. I.e. c must be contained in the set of LMs.

The LMs found by LM ao are given in Fig. 4. The LMs for
the overall problem includes LM (S ) ∪ LM (T ) ∪ LM (e)
= {S, T, e, x, y, z, a}. The landmark c is not included.

The reason for the incompleteness can be seen in the
AND/OR encoding. Besides the two obvious relaxations
given above (delete-relaxation and ordering-relaxation), a
third relaxation is made that further increases the set of so-
lutions: A certain abstract task may be decomposed more
than once. This can be seen as task insertion (cf. Geier and
Bercher (2011) and Alford, Bercher, and Aha (2015b) for an
investigation of its impact on the computational complex-
ity). This relaxation is often used in HTN heuristics to make
computation feasible (Alford et al. 2014), e.g. by Bercher et
al. (2017) or Höller et al. (2018; 2019; 2020).

The incompleteness result raises the question whether
there is a complete algorithm that is feasible (i.e. that can
be computed in P). However, due to Cor. 1 we know that
his is unlikely (as it would require P=NP). There might, of
course, be incomplete methods finding more LMs than ours.
However, when we compare our method with the one from
the literature, we see that the following theorem holds:
Theorem 4 (Dominance). Let L1 and L2 be the task LMs
generated by LMmt & LM ao , respectively. Then, L1 ⊆ L2.

Proof. In our generation, a task c is represented by an OR
node. When its LM set is updated, it is set to the intersection
of its predecessors. These predecessors are nodes resulting
from the methods m1 to mk applicable to c. The LM sets of
m1 to mk are set to the union of the sets of their subtasks.
Since a LM set of a node n contains n by definition, the
subtasks of m1 to mk contain themselves, i.e. that the sets
of m1 to mk contain at least all their subtasks, and c the
intersection of all these sets. This is exactly the definition of
MT LMs. In Fig. 1 and 2 we have given an example for a
LM found by LM ao but not by LMmt , so we might find a
proper superset of LMs.

5 Landmarks Apart from HTN Planning
There are many hierarchical planning formalisms in the liter-
ature, some of them differ severely in their formalization, se-
mantics, and computational properties (Bercher, Alford, and
Höller 2019). Landmarks have also been used in HGN plan-
ning, which is concerned with the refinement and achieve-
ment of state-based goals rather than tasks (Shivashankar et
al. 2012). In a nutshell, there are no task networks in HGN
planning, but goal networks instead, which are partially or-
dered formulae over state-variables. Methods now refine
these goals into further goal networks. There is just one sort
of task: the actions known from classical planning. The ob-
jective is to find an executable action sequence that achieves
all goals and satisfies the given order (possibly by refining
goals using the methods), whereas each action can only be
applied to a state if it achieves some goal, thereby making
it as expressive as HTN planning (Shivashankar et al. 2012;
Alford et al. 2016b). When the HGN formalism was first de-
scribed, Shivashankar et al. (2012) already proposed how an
HGN planner could incorporate heuristics, but no landmark
information was used.

Their follow-up planner GoDeL (Goal Decomposition
with Landmarks) (Shivashankar et al. 2013) uses standard
classical landmark generation (Hoffmann, Porteous, and Se-
bastia 2004; Richter and Westphal 2010) to obtain a partially
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ordered set of landmarks (called a landmark graph) that can
be used to guide the search to the next goal.

Their next system HOpGDP (Hierarchically-Optimal
Goal Decomposition Planner) is guided by a landmark
heuristic called hHL (HGN Landmark heuristic) (Shiv-
ashankar et al. 2016a; 2016b). hHL builds upon existing
landmark techniques and extends them to work on a par-
tially ordered set of goals rather than on a single “at end”
goal as in classical planning: Given a current goal network,
i.e., a partially ordered set of goals, they can regard this net-
work as a landmark graph and extend it by further landmarks
found by techniques from the literature (Richter and West-
phal 2010). They then use this extended landmark graph as
input to the technique of Karpas and Domshlak (2009) to
obtain an admissible heuristic.

The newest HGN system is called HOGL (Hierarchically-
Optimal Goal Decomposition Planner using LMCut) and
again relies on landmarks to guide search (Shivashankar,
Alford, and Aha 2017). In this work, they obtain heuris-
tic estimates by first performing a problem relaxation that
ignores the hierarchy and action applicability restrictions
and then compiling that problem into a classical planning
problem (per search node) to use standard classical heuris-
tics. Whereas this approach is agnostic towards the classical
heuristic actually used, the approach was evaluated using the
LM-cut heuristic (Helmert and Domshlak 2009).

To summarize this line of research: In HGN planning, in-
formation about landmarks was used successfully to a large
extent, but all approaches use the procedures from classical
planning as black box procedures without extending them
(at all or) by the information provided by the hierarchy.

6 Evaluation
We evaluate our new LM generation on a widely-used HTN
benchmark set. It e.g. has been used by Höller et al. (2018)
and Behnke, Höller, and Biundo; Behnke, Höller, and Bi-
undo (2019a; 2019b). It contains 144 problem instances
from 8 domains. Experiments ran on Xeon E5-2660 v3
CPUs, 4 GB RAM and 10 min time.
Landmark Extraction. Task LMs are extracted by both
generation procedures. Over all instances, our generation
finds 13% more task LMs than MT. Besides task LMs, our
approach also extracts fact and method LMs. However, we
find only very few method LMs (0 to 1 per instance)4. When
we compare the full sets of LMs that are found (Figure 5),
we extract 2.3 as many LMs over the entire instance set.

Extraction time is not an issue for both methods: MT LM
generation needs 0.03 ms on average, we need 1.3 ms.
Landmark-guided Search. Though the focus of this pa-
per is on LM generation, we want to show that the newly
found LMs bear information that helps guiding the search.
We therefore integrated the generation mechanisms into the

4This is caused by the grounding procedure of PANDA (see
Behnke et al. (2020)). Whenever there is only a single method
m for a task c, occurrences of c in other methods (or the initial
task network) are replaced by the subtasks of m. At most a single
method LM is left that is caused by a second compilation step that
replaces an initial task network by an initial task.
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Figure 5: Number of all LMs extracted by MT (on the x axis)
and AND/OR (on the y axis) generation split by domain.
Please be aware the different scaling of the axis.

PANDA framework and combined them with the progres-
sion search algorithm described by Höller et al. (2020, Alg.
3). We realized the following heuristics:
• LMC-MT – Landmark count heuristic using MT LMs.

Landmarks are extracted once for the initial task network.
During search, reached LMs are tracked and the number
of unfulfilled LMs is used as heuristic value.

• LMC-AND/OR – Same as before, but using our LM gen-
eration (which also includes fact and method LMs).

• LMC-AND/OR-R – As before with additional analysis
checking whether all unfulfilled LMs are still reachable.
Be aware that a configuration with reachability analysis

is not reasonable for MT LM generation. Here, all LMs are
reached by definition, there is no chance to prevent this. Have
a second look at Fig. 1 & 2. After applying m2, a is not
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entertainment 12 9 9 9 12 12 12 9 9 5
PCP 17 13 13 13 14 12 12 9 8 3
Satellite 25 21 21 21 25 25 25 24 21 23
SmartPhone 7 4 4 4 5 7 6 6 5 6
UM-Translog 22 22 22 22 22 22 22 22 22 19
Woodworking 11 5 6 6 10 11 11 9 9 5
rover 20 4 4 3 4 10 4 5 5 5
transport 30 7 1 1 15 22 22 2 1 19
total 144 85 80 79 107 121 114 86 80 85

Table 1: Coverage table for different systems.
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Figure 6: Number of solved instances over time.

reachable anymore and the search node can be pruned. For
the MT LM set {T, b}, however, pruning is not possible.

Table 1 shows the coverage of several HTN planning sys-
tems. It contains the configuration with the highest cover-
age for each of our LM heuristics; the Relaxed Composi-
tion heuristic (Höller et al. 2018) with FF (Hoffmann and
Nebel 2001) as inner heuristic (RC FF); TDGm and TDGc
heuristics (Bercher et al. 2017), and compilation-based sys-
tems. Two of the latter bound the problem and translate it to
propositional logic (see Behnke, Höller, and Biundo (2018;
2019a)). When no solution is found, the bound is increased.
The third compilation (Alford et al. 2016a) translates the
(also bounded) problem to classical planning and uses the
Jasper planner (Xie, Müller, and Holte 2014) to solve it.

It can be seen that the LMC heuristic benefits from the
new LM generation process. When only looking at coverage,
the possibility to integrate a reachability analysis has a larger
impact than the increased LM set. However, as can be seen
in Figure 6 (showing solved instances after a given time), the
increased LM set also speeds up search considerably. While
the SAT-based systems perform best, our new LM genera-
tion makes LMC competitive with all search-based systems
apart from the RC FF heuristic. However, having the sophis-
ticated and rather complex search techniques of successful
LM planners in classical planning like LAMA (Richter and
Westphal 2010) in mind, it is not surprising that a simple LM
count heuristic is not competitive with the RC heuristic.

7 Conclusion
We introduced a novel LM generation technique for HTN
planning that is based on AND/OR graphs. Notably, we do
not depend on a state-based goal definition, which is often
not present in HTN planning though we can also extract
LMs from this definition if there is one. Our approach finds
fact, task, and method LMs in a single generation process. It
dominates the approach on HTN LMs from the literature,
even when restricted to just task LMs (no other kinds of
LMs could be extracted before). We have shown that the ap-
proach is sound, incomplete, runs in P, and that every com-
plete technique must be NP-hard. We tested our approach on

a widely-used benchmark set and showed that it also finds
more LMs in practice. Though the simple LM count heuris-
tic we used is not competitive with state-of-the-art solving
techniques, we showed that the new LMs bear information
valuable to guide the search.
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Abstract

This paper presents a new model of planning based on rep-
resenting domain knowledge using Combinatorial Categorial
Grammars taken from natural language processing. This en-
ables the capturing of plans with context-free expressiveness.
It uses the same representation that has previously been used
for plan recognition and has been shown to be learnable. Thus
it represents a solid link between planning, plan recognition,
and natural language processing. The paper also compares our
open source implementation to two other well known hierar-
chical planners.

Introduction and Motivation
This paper is motivated by two issues in AI research.
First, the idea that actions in AI planning are functions
from states to states is foundational to AI (Fikes and Nils-
son 1971). Planning based on decomposition is almost
as old (Tate 1977), and has been very successful in de-
ployed systems. However, methods, used to define decom-
positions in hierarchical planning, are not defined as func-
tions from states to states (Ghallab, Nau, and Traverso 2004;
Dvorak et al. 2014; Bercher, Keen, and Biundo 2014;
Shivashankar, Alford, and Aha 2017).

Second, while the close relationship between reasoning
about action and natural language processing (NLP) is well
known (Carberry 1990), the representations used for them
have remained distinct making their integration ad hoc and
require distinct learning algorithms. To address these two
issues, this paper provides a functional formalization of
planning in terms of Combinatory Categorial Grammars
(CCG) (Steedman 2000), a formalism taken from NLP, and
a planning algorithm that contributes:
• Formulation of hierarchical planning using function ap-
plication and composition (rather than decomposition).

• A planner with context-free expressiveness (Aho and Ull-
man 1992) based on an NLP grammar formalism.

• Task level partial order semantics in planning based on
that used in NLP rather than current task level interleaving
common in AI planning.

• A total order implementation that plans directly with the
lifted first order logical representation.

• Runtimes comparable to other hierarchical planners.

However, perhaps more important than the technical contri-
butions of the planner is the linkage that it represents be-
tween planning, plan recognition, and NLP. While the re-
lationship between formal grammars and hierarchical plan-
ning is well known, it has previously only been used to prove
complexity and expressiveness results for planning (Erol,
Hendler, and Nau 1994; Geib 2004; Höller et al. 2014;
Behnke, Höller, and Biundo-Stephan 2015; Höller et al.
2016). In contrast, it is central to the contribution of this
work that the proposed planning domain representation
is a grammar that is exactly the same as that used in
prior work on probabilistic plan recognition (Geib 2009;
Geib and Goldman 2011). While the results of this prior
work won’t be covered here, using the same problem domain
description for both planning and plan recognition (P&PR)
represents a significant step in unifying these research areas.

In addition, CCGs have been used for both NLP pars-
ing (Collins 1997; Clark and Curran 2004) and genera-
tion (White and Rajkumar 2008). Further, work on learn-
ing NLP CCGs has been very successful (Kwiatkowski et
al. 2012). Perhaps, most importantly, (Geib and Kantharaju
2018) has adapted the NLP CCG grammar induction algo-
rithms to show initial results in learning plan CCGs of the
kind used in this paper. Thus, demonstrating that CCGs can
be used for planning is a significant step linking P&PR with
NLP parsing and generation using a learnable representation.
No other representation has yet demonstrated this.

(Geib 2016), has sketched ideas similar to those presented
here. This paper moves beyond that discussion in presenting
a formulation of CCGs more tightly connected to prior work.
Further, it presents an improved planning algorithm and dis-
cusses critical implementation details. Finally, it presents the
first data showing state-of-the-art runtimes, and presents a
more extensive discussion of the relation to other work.

Background Definitions
To bridge terminological differences between research in
NLP and P&PR, these definitions differ slightly from those
presented in CCG work on NLP and even those in previous
plan recognitionwork (Geib 2009; Geib andGoldman 2011).
Definition 1.1 A state, s(~x), is a first order logical formula
using only conjunction and negation over a set of domain
predicates, P , where ~x denotes a possibly empty sequence of
unbound variables used in s.
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We denote individual states with individual lower case italic
letters (possibly subscripted) (e.g. a, s1(~x) etc. ). When nec-
essary, we will also use lower case italic names for predicates
in the planning domain (e.g. in-hand(~x) ) or enumerate the
variables as needed (e.g. in-hand(x1, x2) ). We denote the
set of all states over the domain predicates P as SP .

We assume agents have invokable motor programs that
drive their effectors and may change the state of the world.

Definition 1.2 We define a motor program, mp(~x), as a
parameterized function SP → SP that models the results of
an agent executing one of its parameterized control programs
for every state of the domain.
Wewill use a vertical bar to denote applying amotor program
to a state, resulting in another state, (ie. mp(~x)|s0 = s1).

Motor programs differ from well known planning opera-
tors (Fikes and Nilsson 1971), in that motor program execu-
tion is defined for every state of the domain. Operators are
usually defined as a limited set of precondition and effect
rules. In our implementation, motor programs are also im-
plemented as precondition and effect rules. However, each
motor program has an exclusive and exhaustive set of them.
This has the effect of making traditional forward or back-
ward chaining much more computationally expensive. It also
means that motor programs are always applicable and may
encode significantly more information than operators. As
such they may encode knowledge about and be able to make
predictions about the outcome of their execution in states
outside achieving any anticipated goals.

For example a traditional operator for grasping might have
preconditions that would prevent its use if the objects were
very hot. A motor program would encode the outcome of
possibly burning oneself if such an object is grasped. This is
knowledge that might be necessary in an emergency but is
not relevant for most problem solving domains. Requiring an
encoding for every state helps to more fully model our actual
causal knowledge of the domain and prevent the intentional
or unintentional encoding of biases about the uses of an
agent’s lowest level control programs.

Thus,motor programs capture all the causal knowledge the
system has about the domain. We will use a CCG to encode
information about how to build plans to achieve objectives,
but first we need to define planning domains, planning prob-
lems, and solutions.

Definition 1.3 A planning domain, D, is a four-tuple
〈O,P,SP ,M〉 where:
• O is a finite set of objects in the domain,
• P is a finite set of first order domain predicates,
• SP , is a finite set of states defined by P and O, and
• M is a finite set of motor programs defined on SP
Definition 1.4 A planning problem is a triple 〈D, s0, sG〉
where:

• D is planning domain,
• s0 is an initial state in SP defined in D, and
• sG is a goal state in SP defined in D.

We will use σ~x to denote a set of bindings of domain objects
to the variables, ~x, and their application to a state or motor
program (e.g. s(σ~x) or mp(σ~x)) to denote their application
producing a ground instance.

Definition 1.5 Given a domain, D = 〈O,P,SP ,M〉, and
problem, P = 〈D, s0, sG〉, defined on D, a solution or plan
for P is a sequence of motor program instances fromM:
[(mp1(σ ~x1

)), ...mpn(σ ~xn
))] , such that:

mpn(σ ~xn
)) |...| mp1(σ ~x1

))|s0 = sG.

Thus, a plan is just a sequence of ground motor programs
that when executed in the initial state results in the goal state.

Representing Planning Knowledge in CCGs
We are interested in capturing complex, structured knowl-
edge about the possibly multiple effects the motor program
may be used to accomplish and the many and varied roles
that it can play in plans. This is very similar to the kind of
information that needs to be represented about each word
in a CCG. We will follow this NLP research in using the
term category for these knowledge structures as it ties to to
the early formal work on category and combinator theory
from from mathematical logic(Curry 1977) and provides a
foundation for these algorithms. We will denote categories
in capitals and their parameters will be treated, like those in
states or motor programs, in a parenthesized list or vector
(e.g. A, B(~x), H-FULL(x1, x2) ). We will define categories
recursively based on two kinds of categories: atomic and
complex.
Definition 1.6 We define an atomic category, A(~x), as a
parameterized function from every state in the domain to a
state unique to the category. A(~x) : SP → {sA(~x)}.
An atomic category defines a constant function achieving a
particular state. Thus executing a motor program described
by such a category always achieves the defined state. For
example, consider the following specification of the category
H-FULL with a single parameter for a simple object-moving
domain that we will use for our examples. The first line
defines its associated state, and the second assigns the motor
program grasp to it indicating that the motor program can
be used to achieve it.

H-FULL(x1) := [ in-hand(x1) ∧ !on-table(x1) ].
grasp(x1) → [ H-FULL(x1) ].

Thus, grasp(cup2), would be a function that always results in
states where in-hand(cup2) is true and on-table(cup2) is not.
Where informality is possible, we may use atomic categories
as identifiers for the states they achieve.

Following the use of categories in natural language
CCGs (Steedman 2000), we will define complex categories
using two category construction operators, "/" and "\".
Definition 1.7 Given a set of categories C, where Z ∈ C
and {W,X,Y, ...} 6= ∅ and {W,X,Y, ...} ⊂ C, we define
Z/{W,X,Y, ...} and Z\{W,X,Y...} as complex categories.
The category on the left of the slash is called the category
result and the categories on the right are the arguments.
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The slash operators define new categories that combine a
set of argument categories to produce a result category. They
also define the direction in which the category looks for its
arguments, either before or after as determined by the slash.
For example, consider extending our example:

H-FULL(x1) := [ in-hand(x1) ∧ !on-table(x1) ].
H-ARND(x1) := [ hand-around(x1) ].
grasp(x1) → [ H-FULL(x1) \ { H-ARND(x1) } ].

This specifies the motor program grasp is a function that
can be used to achieve the state associated with the atomic
category H-FULL, but to do this, immediately before its
execution, another function must be executed that results
in the state associated with the atomic category H-ARND.
Likewise, the forward slash operator requires its argument
categories occur after it to produce the state associated with
its result category.

Note that the definition of complex categories does not
require the use of atomic categories for arguments or results.
Thus, complex categories can be built recursively. For exam-
ple, consider extending our domain fragment for grasping:

release→ [ H-EMTY ],
reach4gr(x1) → [ H-ARND(x1) ],
grasp(x1) →
[((PICK(x1)/{H-AT-S})\{H-EMTY})\{H-ARND(x1)}],
unreach→ [ H-AT-S ].

Using categories, and following NLP terminology, we next
define a Plan Lexicon.
Definition 1.8 Given a domain, D = 〈O,P,SP ,M〉, we
define a plan lexicon, L, as a triple 〈D, C∗,Λ〉 where,
• C∗ = CA ∪ CC ,
• CA = a finite set of atomic categories for states in SP ,
• CC = a finite set of complex categories built up recursively
starting from CA, and

• Λ is a function that maps each motor program inM to a
set of categories in C∗.

We will also refer to such plan lexicons as plan grammars. A
lexicon augments a planning domain by associatingwith each
motor program a set of categories capturing domain-specific
knowledge about how it can be used to achieve specific states.
To aid our discussion, we define.
Definition 1.9 A category, R, is the root result of a complex
category, Cc, if it is the leftmost, atomic result of Cc.
For example, PICK is the root result of the category:

((PICK(x1)/{H-AT-S})\{H-EMTY})\{H-ARND(x1)}.

Definition 1.10 Amotor program,mpi, is a possible anchor
of a plan for an (atomic) category, Ca, if the lexicon’sΛmaps
mpi to at least one category whose root result is Ca.
In our example, grasp is an anchor for PICK. Further, we
define a lexical planning problem.
Definition 1.11 Given a domain, D = 〈O,P,SP ,M〉, and
a lexicon, L, defined over D we define a lexical planning
problem as a triple 〈L, s0, sG〉
• s0 is an initial state in SP defined in D,

• sG is a goal state in SP defined in D.
Note that our definition of a lexical planning problem al-

lows for encoding domain knowledge in the lexicon using
categories and the Λ function, but solutions are not defined
in terms of this knowledge (see Definition 1.5). This dis-
tinguishes this work from most prior work on hierarchical
planning. We will discuss this in detail later. This said, the
new algorithm described in the next section, does make use
of such lexically encoded knowledge.

Planning Using CCGs
In addition to viewing a category as declarative knowledge of
a motor program’s functional role in achieving a goal, we can
use its structure to guide the generation of a plan to achieve
its root result. Thus, CCG-based planning can be viewed as a
recursive structure-following algorithm similar to those used
in NLP sentence generation (White and Rajkumar 2008).
Given an atomic category that is a function to a state

we wish to achieve, choose a motor program that is one of
the category’s anchors and add it to the plan, binding any pa-
rameters associated with the category. Then recursively build
plans to achieve its argument categories, in order, appending
the resulting sub-plans either to the left or right of the exist-
ing plan as determined by the category’s slashes. Note, this
builds plans from the anchor motor program outward.
Figure 1 gives pseudocode for this process in a procedure

called LEXgen that takes a lexical planning problem as input
and returns a plan. To make the category-directed search as
clear as possible, we use nondeterministic CHOOSE oper-
ators to avoid explicit code for backtracking over category
and action choice and parameter bindings. X is a variable
over category structures and α is a possibly empty set of
categories.
Note that each iteration of the while loop builds a plan

for one of the arguments to the category. When all of the
arguments in a given set have been processed (see lines 10 and
14) the associated slash is removed allowing the algorithm to
access the next set of argument categories (or the root result).
Note the resulting plan is tested to verify its success (line 16)
before being returned; if not, the algorithm backtracks. Next
we will discuss a short example including plan verification.
Figure 2 shows a traditional hierarchical plan structure for

much of the same structure captured in CCG 1 . Consider
using the lexicon fragment CCG 1 to build a plan to achieve
in-hand(cup2). First the algorithm must find an atomic cat-
egory that includes the desired state. PICK satisfies this re-
quirement. PICK’s result state and the goal state are unified
to find bindings for the category’s parameters resulting in
PICK(cup2). Figure 3 shows how this instantiated category
directs the rest of the plan search. Given a category, the sys-
tem selects one of its anchors and uses it to bind the motor
program’s parameters. Line 2 of Figure 3 shows the selection
of motor program grasp as the anchor for PICK. Parame-
ter binding produces grasp(cup2) and a ground instance of
grasp’s category to direct the rest of the plan search:

((PICK(cup2)/{H-AT-S})\{H-EMTY})\{H-ARND(cup2)}
The system adds the bound motor program to the plan, and
then looks at the next argument of the current category, in this
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1 Procedure LEXgen(L, s0, G) {
2 CG ← { c ∈ C∗ such that G = root(c)};
3 CHOOSE ci(~x) ∈ CG such that ci(~x) ∈ Λ(mpj(~x));
4 CHOOSE σ~x;
5 Plan← [mpj(σ~x)]; C ← ci;
6 WHILE (C(σ~x) 6= G) {
7 IF (C = X\Y ) {
8 CHOOSE ck such that Y = α ∪ {ck}
9 Plan← APPEND(BuildPlan(ck,L), P lan);
10 IF (α = ∅){C ← X; } ELSE {C ← X\α; }}
11 ELSE-IF ( C = X/Y ) {
12 CHOOSE ck such that Y = α ∪ {ck}
13 Plan← APPEND(Plan,BuildPlan(ck,L));
14 IF (α = ∅){C ← X; } ELSE {C ← X/α; }}
15 }
16 IF (Plan|s0 = G){ RETURN Plan; }}

Figure 1: Nondeterministic plan generation pseudocode.

case H-ARND(cup2) (see line 3 of Figure 3) and repeats the
process. In line 4, the system has selected an motor program
that is an anchor for H-ARND and bound it, resulting in:

P = [ reach4gr(cup2) ]
Since H-ARND only requires this single motor program,
planning for it is complete. In line 5, because H-ARND was
a leftward argument of the category directing the search, the
motor program is added to the front of the plan, resulting in:

P = [ reach4gr(cup2), grasp(cup2) ]
In lines 6 to 8, the same process is repeated on the H-EMTY
category, giving the plan fragment:

P = [ release, reach4gr(cup2), grasp(cup2) ]
Lines 9 to 11 in the figure repeat the same process forH-AT-S,
with the difference that a rightward-looking argument to the
category directs the search. As a result, on line 11 the un-
reachmotor program is added to the end of the current plan:

P = [release, reach4gr(cup2), grasp(cup2), unreach]

Since grasp’s category has no more arguments, the plan is

CCG: 1
PICK(x1) := [ in-hand(x1) ],
H-FULL(x1) := [ in-hand(x1) ∧ !on-table(x1)],
H-EMTY := [ !in-hand(x1) ],
...
release→
[ H-EMTY, (PLACE(x1)/{H-AT-S})\{H-ABV(x1)}],
reach4gr(x1) → [ H-ARND(x1) ],
reach4pl(x1) → [ H-ABV(x1) ],
unreach→ [ H-AT-S ],
grasp(x1) →
[((PICK(x1)/{H-AT-S})\{H-EMTY})\{H-ARND(x1)}],
orient(x1) → [ FACE(x1) ],
move(x1, x2) →
[ (((MOVE-OBJ(x1, x2)/{PLACE(x2)})/{FACE(x1)})...
\{PICK(x2)})\{FACE(x1)} ].

release reach4gr grasp unreach 

PICK 

H-EMPTY H-AROUND H-FULL H-AT-S FACE LOCOMOTE FACE H-ABOVE H-EMPTY H-AT-S 

unreach 

PLACE RELOCATE 

reach4pl release orient orient move 

MOVE-OBJ 

Figure 2: The hierarchical plan to move an object given in
CCG 1. Shaded nodes indicate the steps covered by themove
motor program’s complex category.

done. Again note, each argument’s sub-plan is added either to
the beginning or end of the plan as dictated by the category,
building the plan recursively from the middle outward.

Verifying the PlanCategories here are intended to encode
functional knowledge that is likely, not guaranteed, to hold in
all world states. Motor programs are defined in all states of
the world, and are executable even where they do not achieve
the states specified in their categories.

Consider the first example CCG that mapped grasp to
H-FULL. While this is a likely outcome of grasping, the
grasp motor program may predict that H-FULL will not re-
sult for objects that are slippery. As we have said, the causal
knowledge encoded in the motor programs can be more com-
plete than the knowledge of how to go about building plans to
achieve goals encoded in the categories. As such, LEXgen’s
algorithm is not guaranteed to produce a successful plan by
construction and the plan must be verified using the motor
programs. If this test fails, the algorithm backtracks across
chosen categories andmotor programs. Thus, it uses themp’s
verify if the constructed plans achieve the goal.

Somemight argue against building possible plans and test-
ing them for validity afterwards. However, these objections
rest on an empirical question; is this approach actually less
efficient than building plans that are valid by construction?
The answer to this question is dependent on the speed of the
algorithm and the CCG-encoded domain knowledge.

Formal Properties of LEXgen

Theorem 1.1 (Soundness) Let PP= 〈L, s0, sG〉 be a plan-
ning problem. If a trace of LEXgenreturns a solution π, then
π is a solution to PP.
Proof Sketch: The planner algorithm works by generating
a sequence of motor program instances using a category
with the goal as its root result that is within the yield of the
grammar. It tests if it is a solution before returning it. (See
the last line of the pseudo code.) As such, any plan returned
by the algorithm must be a solution to the problem. �

Although the algorithm is sound, it is not is not complete.
Since solutions are not restricted by the information encoded
in Λ, the system’s completeness is contingent on the com-
pleteness of the lexicon relative to the planning problem.
That is, if the lexicon encodes all of the possible solutions to
the problem within its yield then the algorithm is complete.
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1 PICK(cup2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 ((PICK(cup2)/{H-AT-S})\{H-EMTY})\{H-ARND(cup2)} : grasp(cup2)

−1<

3 H-ARND(cup2) (PICK(cup2)/{H-AT-S})\{H-EMTY} : grasp(cup2). . . . . . . . . . . . .
4 reach4gr(cup2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . append-L
5 (PICK(cup2)/{H-AT-S})\{H-EMTY} : reach4gr(cup2), grasp(cup2)

−1<

6 H-EMTY PICK(cup2)/{H-AT-S} : reach4gr(cup2), grasp(cup2). . . . . . . . . . . . .
7 release. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . append-L
8 PICK(cup2)/{H-AT-S} : release, reach4gr(cup2), grasp(cup2)

−1>
9 PICK(cup2) : release, reach4gr(cup2), grasp(cup2) H-AT-S. . . . . . . . . .
10 unreach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . append-R
11 PICK(cup2) : release, reach4gr(cup2), grasp(cup2), unreach

Figure 3: Building a plan to achieve the goal category PICK(cup2). Solid lines denote deconstructing a complex category (-1
and a direction indicator). Dotted lines separate two subtasks of the planning process: choosing a motor program to achieve a
particular category (no annotation) and adding the chosen motor program to the plan (“append-L” or “append-R”) .

However, we can imagine lexicons that simply don’t have a
plan within their yield to address a goal. In such cases, the
algorithm would fail to produce a plan even if a plan could
be assembled from the available motor programs. Thus we
can claim only a qualified completeness for the algorithm.

Definition 1.12 Given a lexical planning problem PP =
〈L, s0, sG, 〉, L is defined to be complete with respect to
PP if it holds that: if π is a solution to PP, then π is in the
yield of the CCG defined by L.
Theorem 1.2 (Contingent Completeness) Let PP =
〈L, s0, sG〉 be a planning problem where L is complete with
respect to PP. If π is a solution for PP, then there is a nonde-
terministic trace of LEXgenthat returns π.

Proof Sketch: The yield of any CCG is determined by the
categories chosen (and hence the motor programs chosen)
and the binding of its arguments to produce instances. Since
LEXgennondeterministically searches over all such possible
choice points, there is at least one trace of LEXgenthat results
in each element of Λ’s yield, and since Λ is complete with
respect to PP, π must be the result one such trace. �

A short discussion of the expressiveness of a CCG plan
lexicon is alsoworthwhile. The expressiveness ofCCGgram-
mars is well studied in NLP and is known to depend on the set
of combinators (Curry 1977) used to combine categories for
recognition. Following prior work on plan recognition using
CCGs (Geib 2009) our system uses only three combinators:

right application: X/α ∪ {Y }, Y ⇒ X/α,
left application: Y, X\α ∪ {Y } ⇒ X\α, and
right composition: X/α ∪ {Y }, Y/β ⇒ X/α ∪ β.

X and Y are categories, and α and β are possibly empty
sets of categories. Intuitively they capture the named func-
tional operations respecting the directionality of the cate-
gory’s slash operator. Limiting CCGs to these three opera-
tors results in context-free languages (Kuhlmann, Koller, and
Satta 2015) making LEXgen’s representation less expressive
than some other planners like SHOP2 (Nau et al. 2003).

Implementation Details
A short discussion of some details of our first-order, C++
implementation of these ideas is also valuable. First, the
CCG-directed search is implemented using iterative deepen-
ing allowing it to build recursive plans. Given a recursive
category (e.g. A\{A} ) the algorithm searches for plans of
increasing length preventing infinite regress or finding sub-
optimal plans. This represents an improvement over planners
that require a fixed bound on search depth or preclude recur-
sive hierarchical plans (Dvorak et al. 2014).

Second, we found it helpful to require LEXgen models be
formulated so as to not require a single object be bound to
two different parameters in a predicate, category, or motor
program. This allows LEXgen’s algorithm to remain com-
plete while reducing the binding search space by eliminat-
ing from consideration bindings of motor programs such as
drive(truck1, loc1, loc1), that would drive truck1 from a lo-
cation to the same location. In cases where this is required,
the model and lexicon can be extended with a specialized
instance (e.g. drive-cycle(truck1, loc1)). Thus, this does not
effect the system’s expressiveness or completeness and re-
duced runtimes by a factor of ten. We have found no domains
in which this caused an increase in the runtime of the system,
however a complete theoretical investigation of this is an area
for future work.

Third, the mapping that defines each mp is deterministic.
One could imagine nondeterministic models that predict a
distribution over resulting states. However, this is an area
for future work. Finally, our implementation has an implicit
observemotor program for all atomic categories that are true
in the world, this prevents the building of plans to achieve
already existing states. Thus given a category likeA\{B}, if
B is already true in the current world state, the planner does
not attempt to build a plan for it.

Finally, like other hierarchical planners, for goal states
that are a conjunction of multiple predicates, we found
it helpful to construct specialized complex categories to
achieve conjunctive goals. For example, consider a typical
goal state in the blocks world (Gupta and Nau 1992) that
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looks like on(block1, block2), on(block3, block4) and as-
suming that the category STACKED-ON(x1, x2) has the
state on(x1, x2), we could add to the planner the complex cat-
egory:G\{STACKED-ON(b1, b2),STACKED-ON(b3, b4)}
to simplify the search for a plan.

Relation to Previous Work
We will focus this discussion on specific technical issues.

Methods vs. Categories:Almost all prior work on hierar-
chical planning, usesmethods to define how tasks are decom-
posed into a series of less abstract subtasks and eventually
ground in executable operators. Given a set of task names,
T , a method is often defined as a four-tuple 〈th, P re, Tn,≺〉
where th ∈ T is the name of the task this method expands,
Pre is a precondition defining when the method is applica-
ble, Tn ∈ T is a set of tasks that will replace th in the plan,
and ≺ is a set of ordering constraints on the tasks in Tn for
the resulting plan to be a valid. The work on Hierarchical
Goal Networks (HGNs) (Shivashankar et al. 2012), also use
methods to describe plan knowledge, however the names in T
refer to goal states. CCGs as formalized here are most similar
to such HGNs since atomic categories represent functions to
states. This said, setting aside method preconditions that will
be discussed later, we can think of HTN/HGN methods as
encoding a set of context-free grammar (CFG) production
rules where the th is the left side of the rules and each of the
possible orderings of Tn is the right side of a rule.

Given this, and CCG’s context free expressiveness, it
should not be a surprise that each assignment of a motor
program to a CCG category can be rewritten as an equiva-
lent, precondition free HTN/HGN method. The method will
have exactly one executable motor program in their right
hand side. The root result of the original category defines
the thing to be expanded and the argument categories the
expansion arrayed around the assigned motor program. For
example,

move(x1, x2) →
[ (((MOVE-OBJ(x1, x2)/{PLACE(x2)})/{FACE(x1)})...
\{PICK(x2)})\{FACE(x1)} ].

(with some abuse of notation) could be seen as the precon-
dition free HTN/HGN method, M1,

M1 =
〈th = MOVE-OBJ(x1, x2), P re = [], Tn = {PICK(x2),
FACE(x1),move(x1, x2), FACE(x1), PLACE(x2)},
≺ = {(1, 2), (2, 3), (3, 4), (4, 5)}〉.

We note, while this instance is totally ordered, CCGs can
represent task level partial order plans.
Since every HTN/HGN method produced by convert-

ing CCG categories will contain an executable motor pro-
gram, CCGs can be seen as an alternative syntax for a
generalized version of Greibach Normal Form Grammar
(GNFG) (Greibach 1965). In GNFs a single terminal begins
the right hand side of every production rule. CCGs are more
general in that the terminal can occur anywhere in the rules
right hand side. Similar to a GNFG, each motor program
category pair can be thought of as storing the results of pre-
compiling search in the decomposition space. Each such pair
defines a tree spine from a root to a leaf node. This highlights

another difference between CCGs and HTN/HGN methods.
A CCG category’s can be thought of a slicing the plan tree
vertically while HTN/HGNmethods slice horizontally. Thus
a category’s argument categories will most often be at mul-
tiple levels of abstraction. This contrasts with HTN/HGN
methods that usually capture only one level of plan decom-
position and do not require terminals in their expansion.
Further, while a motor program, category pair can be

uniquely converted to a HTN/HGN method and thus a CCG
plan lexicon could be converted for use by an HTN/HGN
planner, a given set of HTN/HGN methods is not uniquely
convertible to a CCG plan lexicon. The compiled plan-space
search captured in the motor program, category pairs can
be done in multiple ways while still producing a complete
grammar with the same yield. For example, release could be
the anchor for MOVE rather than move. This would result
in a very different category (with only rightward argument
categories), that is equivalent to a very different HTN/HGN
method. Further it would require a very different rest of the
lexicon in order to keep the yield the same. (Geib 2009) has
shown that the choice ofwhichmotor programs anchorwhich
categories can have a profound effect on the efficiency of plan
recognition. We believe a similar effect holds in planning re-
sulting in the earlier pruning of plans that cannot be ground
and enabling the early termination of search by producing a
complete plan prefix. This is an area for future work.
Preconditions: Many, if not most, other decompositional

planners support preconditions restricting a method’s ap-
plication. Such preconditions present theoretical difficulties
since they may play at least three different roles: 1) defining
causal enablement conditions on the method, 2) preventing
a method’s use when it is unlikely to result in a successful or
desirable plan, and 3) variable binding and search control.
In fact, true causal preconditions (case 1) are very rare. Far

more often preconditions are used to control search prevent-
ing the application of a method where the domain designer
knows it will lead to excessive search or to bind method pa-
rameters to reduce search. While LEXgen does not support
search control preconditions, true causal preconditions for a
CCG are easily encoded in a category by adding leftward
looking argument categories.

Total vs. Partial Order: LEXgen is a total order planner
similar to (Shivashankar et al. 2012). That said, LEXgen’s
CCGs do capture task level partial ordering. That is, two
argument categories can be specified as partially ordered but
their plans cannot be interleaved. First one must be done and
then the other. This keeps it in line with CCG use in NLP.
Note it does NOT require the unfolding of all orderings of
the argument categories in the CCG.
Task Insertion: Unlike several of the latest decompo-

sitional planners (Höller et al. 2014; Alford et al. 2016),
LEXgendoes not support task insertion which allows these
planners to add actions outside of a known decomposition
method. Enabling this in LEXgenis an area for future work.
Heuristic Search: (Shivashankar et al. 2012; Shiv-

ashankar, Alford, andAha 2017) provide heuristics for choice
points in their decompositional planners. We believe these or
similar heuristics can be used to improve LEXgen’s search,
and will discuss this further in the context of our experimen-
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tal results. However, this is still an area for future work.
Status of Domain Knowledge vs. Solutions: It should

be clear by now that CCGs in this formulation represent
general knowledge about how plans are to be built rather than
inviolate knowledge about the causal domain relations. In
this, it is more similar to planners that allow for task insertion
that see methods as advice for plan construction. This is in
sharp contrast to most prior work that defines the correctness
of plans in terms of the methods. However, in a deep sense,
to define plan correctness this way doesn’t actually solve the
problem, instead it pushes it into the grammar to which it
is more explicitly linked in our formulation. Given a set of
motor programs, it is possible that the yield of a grammar
does not include plans for all reachable states in the domain.
Thus it must be that either we claim that 1) some states are
not acceptable goals, 2) the grammar is incomplete or 3)
force the grammar to have a yield that reaches every possible
state and thereby minimize the aid it might provide.

We feel our formulation makes this issue clearer and is
more accurate. We recognize there may be plans an agent has
the motor programs to achieve, but hasn’t leaned the CCG for
its construction. To claim such a planner is complete before
this learning is done seems, to us, counter intuitive. Further,
this approach preserves the NLP distinction between syntax
(CCG categories) and semantics (motor programs) that is
critical to the alignment of these area. If a plan is defined as
being correct solely because it is in the yield of the grammar it
would be equivalent to saying that only syntactically correct
sentences could have any meaning which daily experience
refutes.

Experiments
We have compared this approach to planning to two other
state of the art planners. Note that given the use of CCGs in
plan recognition and NLP research, our objective in doing
this is not to show that our system always performs better
but that it has comparable performance to state of the art
planners and therefore is attractive as an integrative frame-
work. We have compared our implementation of LEXgen

with the hierarchical SHOP2 planner (Nau et al. 2003) and
the ICARUS system (Langley and Choi 2006).We have com-
pared the three systems using twenty two different problems
that fall across four domains: blocks world (Gupta and Nau
1992), the satellites domain from the international planning
competition (IPC ), the logistics domain (Veloso 1992), and
a robot-based kitchen domain.

We have chosen not to compared our system to non-
hierarchical planners like FF (Hoffmann and Nebel 2001)
for several reasons. First, it is generally agreed in the com-
munity, that with sufficient domain knowledge hierarchical
planners will outperform non-hierarchical planners on large
problems. This has a tendency to reduce such comparisons
to knowledge and domain engineering competitions. Sec-
ond, given the universal applicability of motor programs as
opposed to operators, FF-style planners might be at a signif-
icant disadvantage given the breadth of their search space.
Allowing the FF encoding of the domain to reduce themotor-
programs back to being operators again opens the question of

domain engineering and a level playing field. Third, most FF-
style planners uses a propositional representation. In order
to be consistent with prior work in NLP, LEXgen works on a
first order representation opening questions about counting
the cost of grounding. Fourth and finally, while CCGs are
well established in the NLP community, we know of no work
that suggests the use of non-hierarchical representations for
either parsing or generation of language. Thus, even excep-
tional performance against non-hierarchical planners, while
possibly of theoretical interest, would in no way strengthen
our argument that this representation represents an important
link between work on P&PR and NLP.

Note both SHOP2 and ICARUS use of preconditions to di-
rect method search make them more powerful than LEXgen.
Further SHOP2 supports the use of "assert" and "retract"
operators on its model of the state. This can enable SHOP2
to entirely reformulate a problem before solving even adding
new predicates to the domain. In fact, this capability is used
to great effect in prior work to produce runtimes that show
almost no increase as problems significantly increase in size.
However, it raises the question of what limits are placed on
this capability. To compare like with like, none of the SHOP2
domains we tested used assert and retract.

We have encoded domains for all three systems with the
same level of causal domain knowledge (converting causal
preconditions to argument categories in the CCG). We have
not used the assert and retract actions in SHOP2, but we
have included the results of SHOP2 and ICARUS domains
making use of non-causal precondition-directed method de-
composition search even though LEXgen does not support
such preconditions. For all three systems, the motor pro-
grams ("operators" in SHOP2 and "basic skills" in ICARUS)
are identical, including the parameter lists, and the same
logical propositions describe world states. The same plan
structures were encoded in the SHOP2 methods, ICARUS
complex skills, and LEXgen complex categories, however
as we have discussed the assignment of motor programs to
LEXgen categories effectively stores precompiled search in a
way not easily replicated in the other systems.We believe this
encoding aided LEXgen’s performance. A complete study of
this is an area for future work.

In Figure 4, "SHOP2–" refers to the execution time of the
planner without "assert" and "retract" actions and method
preconditions and SHOP2 refers to domains with method
preconditions. The execution times reported under ICARUS
are for domains with the basic ICARUS skills, the runtimes
under ICARUS′ contains the same complex skills without
preconditions, and runtimes reported under ICARUS′′ are
for domains with complex skills with preconditions.

The satellites domain involve plans for taking one, two
and three images. We conducted two types of blocks world
tests. The single goal tests involve domains having one to
six blocks in the domain with a goal of having a specified
block on top of another (the problems were designed such
that the target blocks were at the bottom of two stacks). The
multiple goal tests included three to five blocks with three
to five conjunctive goals. The logistics domain problems
included transporting one to three packages within the same
city and across two different cities. The four problems in the
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Domain LEXgen SHOP2– SHOP2 ICARUS ICARUS′ ICARUS′′
Satellites 1 image 0.0342 0.0365 0.0355 4.6037 10.6581 4.0650
Satellites 2 images 0.2408 0.0734 0.0362 6.0789 16.1588 6.3339
Satellites 3 images 53.7502 10.266 0.051 7.6421 25.6157 8.4330
Blocks 3 single goal 0.0003 0.0959 0.0353 6.3337 13.6586 2.8048
Blocks 4 single goal 0.0011 1.4492 0.0352 9.7077 12.1976 3.4093
Blocks 5 single goal 0.0390 — 0.0355 19.0961 36.4703 4.3555
Blocks 6 single goal 0.0717 — 0.0363 26.8817 89.5109 5.3468
Blocks 7 single goal 133.614 — 0.0364 25.7804 89.5109 6.4030
Blocks 3 multi goal 0.0098 — 0.0362 4.0956 49.4053 4.8493
Blocks 4 multi goal 0.0016 — 0.0371 21.5772 11.2691 10.1875
Blocks 5 multi goal 0.0110 — 0.039 37.0607 — 24.3125
Blocks 6 multi goal 0.0645 — 0.0382 26.9061 18.6062 5.3530
Blocks 7 multi goal 143.685 — 0.0385 25.7329 89.4028 6.4028
Logist 1 pack, 1 city 0.0003 0.0345 0.0344 2.2329 2.3463 2.5730
Logist 2 pack, 1 city 0.0017 0.0353 0.0348 4.2632 8.0660 4.2977
Logist 3 pack, 1 city 0.0008 0.0353 0.0353 11.0704 9.6281 9.910
Logist 1 pack, multi city 12.5573 0.0793 0.0371 11.9139 49.2183 48.9495
Logist 2 pack, multi city 568.6783 — 113.037 — 143.136 66.1528
Robot Table Setting 1 0.0019 0.0359 0.036 0.1504 0.1944 0.1748
Robot Table Setting 2 0.1265 0.0386 0.039 0.3932 0.3048 0.326
Robot Table Setting 3 6.4188 0.1701 0.0538 0.232 0.3576 0.3408
Robot Kitchen mixing 0.4657 0.0401 0.0359 — 6.3292 0.5552

Figure 4: Runtimes in seconds for twenty-two problems across four domains for LEXgen, SHOP2, and ICARUS.

robotic kitchen domain involve setting the table and mixing
ingredients to make a cake. All times are real/wall clock
times in seconds. Dashes (—) are runtimes over ten minutes.

Our hypothesis was that LEXgen would perform at about
the level of SHOP2 and ICARUS without search con-
trol method preconditions, however, it easily surpassed this
benchmark. Our results show that given the same domain
knowledge, LEXgen has the best performance for ten of the
twenty two problems and is beaten only by SHOP2 using
search directing preconditions in an additional five domains.

As we have already stated, LEXgen does not support pre-
conditions to control search. However, when there are multi-
ple categories with a desired root result, ordering the search
among these categories using a heuristic is an obvious area
for futurework thatwe have discussed in the previous section.
Conditioning this order on the search will provide a similar
capability to that shown in SHOP2 and ICARUS. We antic-
ipate conditioning this search on the state of the world and
previous successful uses of the category in building plans.
That said, these results clearly show LEXgen has compara-
ble performance to these state of the art planners. That said,
with search control knowledge provided by method precon-
ditions, SHOP2’s runtime is less affected than LEXgen as
problem size increases. While this gives us a good reason
to consider encoding heuristic category-selection search, it
does not suggest an issue with scaling to larger domains.

Further exploration ofwhere SHOP2 and ICARUSout per-
formed LEXgen has revealed cases attributable specifically
to specialized reasoning about the binding of objects to ac-
tion parameters. For example, we might want to prevent that
application of method or skill that resulted in the exploration
of plans for the moving of certain specific blocks or blocks

that are not of a particular shape. Capturing such restrictions
in preconditions on methods is very common in hierarchical
planning systems. However, to us this seems more amenable
to simple typing of the action and category parameters rather
than full preconditions. As a result, we are working on ex-
tending LEXgen with typed parameters for predicates, motor
programs, and categories.

Finally, we note that ICARUS′ (ICARUS with complex
skills but without preconditions) sometimes performs worse
than ICARUS with just basic skills. We believe this is be-
cause ICARUS was designed to have complex skills with
preconditions, and without the preconditions, the complex
skill definitions add extra overhead to the search process.

Conclusions
This paper has presented a reformulation of planning and a
planning algorithm, LEXgen, in terms of CCGs, a state of
the art learnable grammar formalism taken from NLP (Geib
and Kantharaju 2018). This representation is also exactly the
same as that used to perform plan recognition in (Geib 2009;
Geib and Goldman 2011). It uses these CCG categories to
direct the search for plans, organizing all planning knowledge
around executable actions making it a very attractive frame-
work for unifying reasoning about action and language.
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Abstract
This paper describes our approach, SHOPFIXER, to plan re-
pair in Hierarchical Task Network (HTN) planning. We de-
veloped SHOPFIXER in the SHOP3 HTN planning frame-
work, extending SHOP3’s HTN language and theorem-
proving capabilities in several ways. Unlike many existing
HTN plan repair approaches that depend on chronological
backtracking, SHOPFIXER uses backjumping techniques to
efficiently, correctly and stably repair the hierarchical plans,
where stability means with minimal perturbation to the origi-
nal plan. We describe our new plan repair method and present
experimental results in a number of IPC domains, demon-
strating that it generates plans with limited perturbations, and
that its plan repair is more computationally efficient than re-
planning. We compare our results with earlier experimental
results from Fox, et al. on plan repair and plan stability. Our
results confirm theirs, and generalize them. Specifically, we
generalize their LPG-repair algorithm to handle plan upsets
during execution, and evaluate it in such situations.

1 Introduction
Plan repair has been shown to provide advantages over gen-
erating new plans from scratch both in terms of planning
runtime and in terms of plan stability – the amount of plan
content that is retained between the original and repaired
plans (Fox et al. 2006). Fox et al. demonstrated that plan
repair could provide new plans faster, and with fewer revi-
sions, than replanning ab initio in the face of disruptions.
They use the term “stability” to refer to the new plan’s sim-
ilarity to the old one, by analogy to the term from control
theory. In other prior work, the term “minimal perturbation”
has been used synonymously. Plan stability is particularly
important for human interaction: users are confused by radi-
cal changes to plans introduced in response to trivial upsets.

Previous work on plan stability was limited in that it could
only handle plan upsets introduced by modifications to the
initial state of the plan (Fox et al. 2006). Our work extends
Fox et al.’s approach based on methods from existing plan-
repair works such as Wilkins and desJardins (2001), Ayan
et al. (2007), Bidot, Schattenberg, and Biundo, and Kuter
(2012) in order to handle disturbance that can occur any-
where in the course of plan execution. One way in which
SHOPFIXER is less general than Fox et al.’s is that it does
not handle goal modification. We chose not to do this be-
cause we did not have a good metric for the size of a goal

modification, and it is even less well supported by PDDL
than are disturbances. Also, most other repair work is lim-
ited to disturbance handling.

In this paper, we describe SHOPFIXER, a new method
for repairing plans generated by the forward-searching HTN
planner, SHOP3. Our method uses a graph of causal links
and task decompositions to identify a minimal subset of the
plan that must be fixed in plan repair. We also extend the no-
tion of plan repair stability introduced by Fox et al. (2006),
and further develop their methods and experiments, which
demonstrated the advantages of plan repair over replanning.

Contributions of this work are as follows:

• We describe a new technique, SHOPFIXER, and our ex-
tensions to the well-known totally-ordered HTN planning
formalisms (Ghallab, Nau, and Traverso 2004; Goldman
and Kuter 2019). This approach uses causal links for plan
repair in SHOP3. Unlike previous such methods (Ayan et
al. 2007; Kuter 2012) of the same vein, we show that plan
repair and stability in SHOPFIXER is sound and complete,
and that its flaw detection method is complete, but un-
sound: a conservative over-approximation.

• We show how to use NCD (Normalized Compression
Distance) for evaluating plan stability and demonstrate
how this measure refines plan stability significantly over
the existing use of action distance (Srivastava et al. 2007)
in (Fox et al. 2006) (see Figure 5).

• To support experimentation, we have extended Fox et al.’s
LPG variant (“LPG-repair”) to be able to repair plans up-
set in the middle of execution: previously it was only able
to react to changes in the initial state, conceptually be-
tween the completion of planning, and the commence-
ment of execution.

• In three different planning benchmark domains with dif-
ferent characteristics and over 700 planning and plan-
repair planning problems in total, our experimental results
confirm earlier results on the general advantages of plan
repair over replanning, both in terms of computational ef-
fort, and in terms of plan stability. SHOPFIXER shows
more stable and consistent effect on plan stability mea-
sured by NCD than does LPG-repair since SHOPFIXER
is a lifted planner and can find plan modifications that are
not distinguishable to LPG-repair (cf. Figures 6 and 7).
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Listing 1: Effects expressions
<literal>* |
(forall (<variable>?) <literal>*) |
(when <GD> <literal>*),

• Our experimental results support the utility of our replan-
ning method for forward HTN planning. The SHOPFIXER
method is somewhat at odds with the method of Höller et
al. (2018), which uses a subtly different definition of HTN
plan repair. We discuss these differences with the pros and
cons of both approaches.

2 Preliminaries
Our work is done in the context of the SHOP3 HTN plan-
ner (Goldman and Kuter 2019), successor to the earlier HTN
planners, SHOP2 (Nau et al. 2003), and SHOP (Nau et al.
1999). Ghallab, Nau, and Traverso (2004) describe a re-
stricted case of HTN planning called Total-order Simple
Task Network (TSTN) planning, a formalization of the orig-
inal SHOP HTN planning algorithm.1 TSTN is a restricted
version of HTN planning in which each method’s subtasks
are totally ordered, each method’s constraints consist solely
of preconditions, and no critics are allowed.

TSTN planning is defined over a language, L, the set of
all literals in a function-free first-order language over a finite
domain of quantification, ω(L). A state, s ∈ S(L) is an
assignment of truth values to every positive literal in L.

A TSTN Planning domain for a language, L, is a tu-
ple2: D(L) = 〈tasks(D(L), ops(D(L)),meths(D(L))〉 of
a set of tasks, operators, and methods. Each operator o ∈
ops(domain) is a triple

o = (name(o), precond(o), effects(o)),

where name(o) is a task (see below), and precond(o) and
effects(o) are sets of literals called o’s preconditions and ef-
fects. An action α is an instance of an operator. If a state s
satisfies precond(α), then α is executable in s, producing the
state γ(s, α) = (s−{all negated atoms in effects(α)})∪{all
non-negated atoms in effects(α)}.

In SHOPFIXER, we extend this definition to PDDL2.1
actions, but without functional and arithmetic expressions.
precond(o) is a logical expression as defined as <GD> in
PDDL2.1 grammar (Fox and Long 2003). effects(o) is de-
fined as in PDDL 2.1 excluding durative and functional ex-
pressions: see Listing 1.

A task is a symbolic representation of an activity. Syntac-
tically, it is an expression τ = t(x1, . . . , xq) where t is a
symbol called τ ’s name, and each xi is an element of ω(L).
If t is also the name of an operator, then τ is primitive;
otherwise τ is nonprimitive (or “complex”): tasks(D) =
prims(D) ∪ comps(D). Intuitively, primitive tasks can be
instantiated into actions, and nonprimitive tasks need to be
decomposed (see below) into subtasks.

1SHOP3 and SHOP2 are more expressive extensions of SHOP.
2We leave the language arguments implicit in the future.

A method, m, specifies how to decompose a task:
m = 〈name(m), task(m), precond(m), subtasks(m)〉

where name(m) is m’s name and argument list, task(m) ∈
tasks(D) is the task m can decompose, precond(m) is a
set of preconditions, and subtasks(m) = (t1, . . . , tj) , ti ∈
tasks(D), the expansion of task(m), a sequence of subtasks.

Typically, we work with domain descriptions, collections
of task, operator, and method schemas, with variables for
some of the name, precondition, and effect arguments.

A TSTN planning problem is a three-tuple P =
〈s0, T0,D〉, where s0 is an initial state, T0 is a sequence of
ground tasks, the initial task list, and D is a TSTN domain.

If T0 is empty, then P ’s only solution is the empty plan
π = ε, and π’s derivation (the sequence of actions and
method instances used to produce π) is δ = ε. We say that δ
is executable in the current state, yielding no state changes.

If T0 is nonempty (i.e., T0 = 〈t1, . . . , tk〉 for some k >
0), and s0 is the current state, then let T ′ = 〈t2, . . . , tk〉.
If t1 is primitive and there is an action α with name(α) =
t1, and if α is executable in s0 producing a state s1, and if
P ′ = 〈s1, T ′,D〉 has a solution π with derivation δ, then
the plan α • π is a solution to P (where • is concatenation)
whose derivation is α • δ. In that case, α • δ is executable
in s0. If t1 is nonprimitive and there is a method instance
m such that task(m) = t1, and if s0 satisfies precond(m),
and if P ′ = 〈s0, subtasks(m) • T ′,D〉 has a solution π with
derivation δ, then π is a solution to P and its derivation is
m • δ. The nonprimitive task task(m) is executable, if s0
satisfies precond(m) and its subtasks(m) are executable in
s0. By induction, the derivation m • δ is executable in s0, if
δ is executable. A sequence of tasks t1t2 . . . tn is executable
in s0 if t1 is executable in s0, the state after executing t1 is
s1, and t2 . . . tn is executable in s1.

The definition of a derivation, above, defines a derivation
tree (or, less formally, a plan tree), with edges from complex
tasks to the subtasks in their expansion, and with the primi-
tive tasks of the plan as their leaves. We extend the plan trees
by adding cross edges from primitive tasks that establish lit-
erals to the nodes that consume them in preconditions. While
the establishers are all primitives, the consumers may be ei-
ther primitives or complex tasks (note that the complex task
as such does not consume the precondition, it is the method
whose task network is used that has the preconditions).

A plan disturbance is an unexpected change in the world
state after the execution of a prefix of the plan. A plan dis-
turbance ξ(π), for a TSTN plan, π = 〈α1 . . . αn, 〉 is a tuple
ξ(π) = 〈pred(ξ(π)), effects(ξ(π))〉, where pred(ξ(π)) =
αk is an action in π3 and effects(ξ(π)) is a set of ground
effects as in a STRIPS operator.

We assume an execution model that is a very simple ex-
tension of classical planning: if a task’s preconditions hold
when it is started, then the task is executable. An action that
is executable transforms the state into a new state by ap-
plying its effects to the state in which it was executed. The
effects of plan disturbance ξ(π) are applied in the state fol-
lowing the execution of pred(ξ(π)).

3We also permit the special value ε for disturbances that occur
before any actions.
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Listing 2: “PDDL methods” for SHOP3.

<method> ::= (:method <method-task>
:method-name <symbol>
:variables <typed-list (variable)>
:precondition <GD>
:task-net <task-net>)

<method-task> ::= (<task-symbol> <task-arg>∗)
<task-arg> ::= <name> | [<variable> -<type>]
<task-net> ::= (<task-net-component>+)
<task-net-component> ::= (<task-symbol>

<method-task-arg>∗)
<method-task-arg> ::= <term>

3 Our SHOP3 Extensions
Our approach to plan repair is based on the existing SHOP3
planner (Goldman and Kuter 2019), with some extensions,
and previous work on plan repair in UMCP-style HTN plan-
ners (Ayan et al. 2007). Two key extensions are the addition
of PDDL handling to SHOP3, and the addition of an alter-
native search engine that can perform backjumping. We add
PDDL handling for two reasons: (1) PDDL has a clearer,
and easier to handle semantics than does SHOP3’s language:
in theory SHOP3’s language may comply with PDDL se-
mantics, but in practice, it has the full expressive power of
a temporal extension of Prolog. (2) Incorporating PDDL al-
lows us to handle benchmarks and make comparisons.
PDDL in SHOP3 Now SHOP3 can plan with both native op-
erators and PDDL actions, and can incorporate PDDL do-
mains in its own domains by reference. Additionally, we
have developed “PDDL methods” for SHOP3.

The STRIPS dialect of SHOP3 is as follows: (1)
primitives are PDDL typed STRIPS operators (i.e.,
equivalent to PDDL requirements of :typing
:negative-preconditions), and (2) the method
grammar is given in Listing 2. In that grammar,
<GD> and <typed list (variable)> are as
defined in the PDDL 2.1 grammar (Fox and Long
2003). <task-symbol> is the same as PDDL 2.1’s
<action-symbol>, however additionally each
<task-symbol> is classified as either primitive or
complex. <method-task-args> and arguments in
preconditions, if variables, must be elements of the pa-
rameter list. <method-name> is also equivalent to
<action-symbol>: it designates a unique method for
achieving the <task-spec>. This is equivalent to the
following limitations:

1. Typed STRIPS dialect of PDDL for the primitives;
2. Conjunctive preconditions for the methods, no SHOP3

special language features.
3. For methods, only variables in the task parameters and in

the :variables list are scoped over the preconditions
and effects (standard SHOP3 has Prolog-style scoping).

4. All tasks will be ground when added to the plan, and all
task parameters (including those for complex tasks) will
be ground before the preconditions are checked.

We will initially explain our approach for the simple
case of the STRIPS dialect, and then will extend to “ADL
SHOP3.” The ADL dialect of SHOP2 uses as operators
PDDL actions in the ADL dialect, and permits ADL-style
quantification in method preconditions (but not functional
terms or numerical fluents). So we add to the method precon-
ditions grammar the ability to use forall and exists,
and the full set of boolean connectives.

Note that neither of our SHOP dialects supports SHOP3’s
:unordered construct, which permits partial ordering in
a method’s task network. We are interested in doing so, but
this causes issues with the semantics of plan executability
that we discuss further in our conclusions.
Backjumping Another key extension to SHOP3 was to add
the ability to do backjumping search. Ordinarily, if SHOP3
makes a poor decision at a state, the search process will lead
to dead ends, and it must back up to that state and resume
searching with a different decision. The simplest approach
to “backing up” is chronological backtracking: undoing the
most recent decision in the search and trying an alternative.
However, in some problems, it is possible to determine that
the most recent decision was not relevant to reaching the
dead end. Backjumping (Gaschnig 1979) exploits such in-
formation by skipping over irrelevant decisions and back-
tracking directly to the most recent relevant decision, d, un-
doing all the decisions above d in the search stack.

4 Plan Repair
The basic idea behind our plan repair approach is very sim-
ple: when a disturbance is introduced into the plan, SHOP-
FIXER will find the minimal subtree of the plan tree that
contains the node whose preconditions are clobbered by that
disturbance: the failure node. If there is no such node, then
the disturbance does not interfere with the success of the
plan. SHOPFIXER will then repair the plan, starting with the
minimal subtree.

To find the minimal subtree around a failure node, SHOP-
FIXER finds the first task in the plan that is potentially “clob-
bered” (rendered un-executable) by that disturbance, and
restarts the planning search from that task’s immediate par-
ent in the HTN plan (since that was the point at which that
task was chosen for insertion into the plan). This plan repair
is done by backjumping into the search stack for SHOP3 and
reconstructing the compromised subtree without the later
tasks (see the discussion in the conclusions, Section 8). Note
that the first clobbered task may be either a primitive task or
a complex task. Furthermore, if p is the parent of child c in
an HTN plan, then p’s preconditions are considered chrono-
logically prior to c’s, because it is the satisfaction of p’s pre-
conditions that enables c to be introduced into the plan: if
both p and c fail, and we repair only c, we will still have
a failed plan, because after the disturbance, we are not li-
censed to insert c or its successor nodes.

SHOPFIXER restarts the planning search by backjumping
to the corresponding entry in the SHOP3 search stack, which
it retains, and updating the world state at that point with
the effects of the disturbance. When restarting the planning
search, SHOPFIXER “freezes” the prefix of the plan that has
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Figure 1: A high-level illustration of causal links over a task hier-
archy generated by SHOP3.

already been executed, as well as the deviation and its ef-
fects. It may backjump to decisions prior to the deviation,
for example, if the immediate parent of the failed task is the
top level task of the problem, but it cannot undo the effects of
an action that is already done. SHOPFIXER returns a repaired
plan that is made up of the prefix before the disturbance, the
disturbance, and the repaired suffix.

From this simple outline, it can be seen that the critical re-
quirement for plan repair is to find the chronologically first
clobbered task. For the STRIPS dialect of SHOP3, we will
see that we can provide sound and complete detection of the
first clobbered task. However, we cannot do this efficiently
for the ADL dialect, because of conditional execution. For
the ADL dialect, we can only provide completeness (if a is
the first clobbered task in the plan, we will find it or a pre-
decessor), and not soundness (a may appear before the first
clobbered task, but no task before it is clobbered). For this
reason, it follows from the soundness and completeness of
SHOP3 that our plan repair algorithm is sound and complete,
but it may do more work than is necessary.

SHOPFIXER finds the first clobbered task using causal
links. We have enhanced SHOP3 so that whenever it inserts
a task into the plan, it associates with the task causal links to
its preconditions. A causal link is a triple, 〈e, p, t〉, where e
is the action that established the ground literal p, and t (the
“consumer”) is a task that requires p in its preconditions.
Figure 1 illustrates an abstract depiction of a graphical rep-
resentations of causal links over a task hierarchy generated
by SHOP3. SHOP3 maintains a link only for the latest es-
tablisher of p relative to t, as is required for soundness. The

causal links are hashed with p as the key, so that if a distur-
bance clobbers p, SHOPFIXER can find the first consumer.

Given the simplicity of finding the first clobbered con-
sumer from a proposition, p, the soundness and complete-
ness of this task, depends on the soundness and complete-
ness of causal links. Completeness is readily established,
since it requires simply recording the establisher of each
proposition or, in worst case, searching backwards through
the state trajectory of the plan, which SHOP3 maintains (im-
plicitly) for purposes of backtracking/backjumping.

Soundness is also immediate, with the exception of the
complex tasks. For a complex task, there may be variables
(in the :variables property of the method, see Listing 2)
not bound until after the method is chosen. Those variables
are effectively existentially quantified (their bindings come
from a refutation of the negation of the preconditions), and
SHOP3 records causal links for the grounded preconditions.
So, for example, if we have a method like the following:
(:method (achieve-goals)

:variables
(?obj - objective ?mode - mode)

:precond
(communicate_image_data ?obj ?mode)

:task-net
(:ordered
(communicated_image_data

?obj ?mode)
(achieve-goals)))

which chooses an objective and a mode from the goals, and
SHOP3 chooses obj1 for ?obj and h_res for ?mode,
then it will record the causal link

〈e,(communicated image data obj1 h res), t〉
Assuming that a disturbance countermands this task
(i.e., deletes (communicated image data obj1
h res)), then arguably treating t as clobbered is incorrect,
because the task could be retained, and query for
(communicate_image_data ?obj ?mode)

rather than replanning its parent. However, in practice,
SHOP3 binds these variables concurrently with choosing the
task, so if this is unsound, it is a benign unsoundness: when
replanning from t’s parent, SHOP3 will first consider alter-
native bindings for ?obj and ?mode, and any siblings to
the right of this task will be replanned anyway.

We have shown that finding the first clobbered task can
be performed in a sound and complete way for the STRIPS
dialect of SHOP3. We use this to establish the soundness
and partial completeness of the ADL dialect. Recall that
ADL adds logical connectives, quantification (forall and
exists), and conditional effects. It is conceptually simple
to account for the logical connectives and quantification, be-
cause of PDDL’s finite domain of quantification:
AND handled as above;
NOT Negated ground literals can be handled identically to

positive ground literals, complex negations are rewritten
to drive the negations inward;

OR take the causal links from one conjunct or another;
forall over a fixed, finite domain, a conjunction.
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exists over a fixed, finite domain, disjunction.

imply this is equivalent to a disjunction.

Note that the use of disjunction already compromises the
soundness of finding the first clobberer, because a task with
the precondition (or p q) that is executed in a state sat-
isfying p ∧ q, will get only one causal link, for p or q, so it
may be incorrectly retrieved if only one of the two is deleted
by a disturbance. In practice, we have not found this un-
soundness to be problematic, but it is certainly possible that
it would be, particularly in a domain with existentially quan-
tified preconditions ranging over a large set, such as “there
must be an employee sitting at a monitoring station,” if there
are many employees, many monitoring stations, and more
than one employee at a single monitoring station.

A second cause of unsoundness comes from conditional
effects. Recall that conditional effects are of the form
(when p e), where p are the secondary preconditions for
e relative to the operator with this effect. When SHOP3 adds
a to the plan, it will add causal links for p relative to every
e that is instantiated, and (not p) for every e not instan-
tiated (the latter happens because of the handling of quanti-
fiers that contain the when effect). In other words, instead
of capturing the causal links for “every effect of a that is
used in the plan,” SHOPFIXER uses links for “the secondary
preconditions that cause a to have exactly this set of effects.”

We tolerate the unsoundness in order to avoid reasoning
about arbitrary logic in preconditions, and chaining con-
ditional effects through multiple stages in a plan. Trying
to compute the clobbering conditions exactly would in the
worst case involve solving SAT problems. Section 6 illus-
trates how this tradeoff plays out empirically: to date it
seems benign – the savings for plan repair are still substan-
tial, and the cost of maintaining the causal links manageable.

5 LPG Extensions
Recall that Fox, et al. (2006) were limited to repairing/re-
planning only in response to changes in the initial state,
rather than changes in the middle of plan execution. We
have extended their version of LPG with a preprocessor
that handles disturbances in the middle of plans. Using a
modified initial state I ′ and/or goal condition set G′ along
with plan π that solves an original classical planning prob-
lem P = 〈F,A, I,G〉, they defined the replanning prob-
lem as Preplan = 〈F,A, I ′, G′〉 and the repair problem as
Prepair = 〈F,A, I ′, G′, π〉. However, just as SHOPFIXER
can begin the process at an intermediate state in the plan

sdiv = ad−1 (ad−2 (. . . (a1 (I)) . . .))

where the divergence occurs just before executing action
ad, we also update the initial state in LPG to be sdiv . Then
the replanning problem is simply Preplan = 〈F,A, sdiv, G〉
and the repair problem is Prepair =

〈
F,A, sdiv, G, πd..|π|

〉
where πi..j is the subsequence of the plan π from actions ai
to aj , inclusive. That is, LPG begins the planning process in
the state where the divergence occurs and repairs the remain-
ing actions in the plan (without the task network information
that is available to SHOPFIXER).

6 Experiments
To assess the efficiency and correctness of our approach we
have conducted preliminary experiments with the “Open-
stacks”4, “Rovers”5, and “Satellite”6 domains from the IPC.
We chose these domains for their use of the ADL dialect of
PDDL. Our results show a substantial savings for using plan
repair over replanning from scratch in an unexpected state
during plan execution.

Problems for experimentation were constructed from the
IPC problems, giving a sliding scale of difficulty for each
domain. For each domain, we defined a set of disturbance
pseudo-actions, which involved events like shipping failures
(in Openstacks), loss of samples, obstructions to line of sight
(in Rovers), direction changes, decalibrations, and power
loss (in Satellite). The disturbance actions had to be care-
fully written in order to not render a problem unsolvable, or
to change the class of the problem. For the notion of class
of the problem, we drew on Hoffmann’s (Hoffmann 2005)
analysis. For example, we avoided breaking the symmetry of
the can_traverse relationship in the Rovers problems.
This property is not formalized in any way in the domain
(PDDL does not support higher-order assertions about prob-
lems), but it is present in all of the problems nevertheless.
Changing the character of the problems with disturbances
would render the repair and replanning less directly compa-
rable. HTN domains for these problems, the problems them-
selves, disturbance actions, and raw results are available on
the web (Goldman, Kuter, and Freedman 2020).
Computational Efficiency Figure 2 shows the comparison
between the time to find the original plan and the time to
repair the plan for SHOP3. Our experiments with SHOP3
support Fox et al.’s argument for plan repair over replan-
ning, and also show the value of our replanning method
for SHOP3. For each problem instance along the x-axis, the
boxes mark the lower quartile q1, median, and upper quar-
tile q3 of the set of times taken per run T . The extended
whiskers indicate the interval of times taken per run that are
within 1.5 times the interquartile range from these quartiles;
that is, a line from the minimum to the maximum of W =
{t ∈ T |q1 − 1.5 (q3 − q1) ≤ t ≤ q3 + 1.5 (q3 − q1)}. Any
runs whose times are outside W are marked with a dot. The
results here are for 10 runs for each problem instance of
Openstacks, Rovers, and Satellite. Each run has a randomly
generated deviation that clobbers the preconditions for some
action in the plan suffix, rendering the plan un-executable or
preventing it from achieving the goal. Note that Openstacks
runtimes, unlike those for the other two domains, are plotted
on a logarithmic scale, because of their high variance.

Recall that in order to make a plan repairable, SHOP3
must save much more information in the course of planning.
In particular, it must build a plan tree that records causal
links between actions and the tasks that consume their ef-
fects. In order to determine whether our plan repair is sim-
ply a tradeoff between spending more time in planning to
save time in plan repair, we compare the runtime of generat-

4
http://icaps-conference.org/ipc2008/deterministic/

5
http://ipc02.icaps-conference.org/

6
http://ipc04.icaps-conference.org/deterministic/
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Figure 2: Comparing plan repair time to replanning, SHOP3.
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Figure 4: Comparing Openstacks repair time to replanning, LPG.

ing repairable plans with the additional information needed
for replanning together with the runtime for generating plans
without the additional information. Results are in Figure 3.

We ran the same problems and deviations using LPG-
repair (henceforth “LPG”), with the preprocessing described
above. Results on Openstacks, in Figure 4, confirm those
with SHOP3: they show a high variance (Openstacks run-
times are plotted logarithmically), and show a clear advan-
tage for plan repair, in terms of runtime. Results on Rovers
(Table 1) and Satellite on the other hand, are equivocal,
showing no clear advantage for repair over replanning. They
exhibit a floor effect: runtimes for these problems are not
significant for LPG. We have omitted the table for Satellite
to save space: it is essentially identical to that for Rovers.

Plan Stability Metric Another proposed advantage of plan
repair over replanning is stability: repaired plans will be
more similar to the original plans than entirely new plans
from replanning. In their paper, Fox et al. (2006) measure
plan stability using Action Distance (AD). Briefly, this is
the cardinality of the symmetric set difference of the actions
in the two plans. We have argued elsewhere (Goldman and
Kuter 2015) that there are a number of problems with this
definition: it’s insensitive to the ordering of steps in the plan,
it treats (drive truck1 src dest) and (drive
truck2 src dest) as just as different as (drive
truck1 src dest) and (navigate vaporetto1
src dst), etc.. We propose the use of Normalized Com-
pression Distance (NCD) as a better alternative to AD. For
an example of why we prefer NCD, see Figure 5. One can
easily see that AD provides a much less stable measure of
distance, so we use only NCD going forward.
Plan Stability Our experiments with SHOP3 and LPG con-
firm and extend the Fox et al. (2006)’s results: extend be-
cause we support plan upsets anywhere during execution.
Our results on plan stability, measured using NCD are shown
in Figure 6 for SHOP3, and 7 for LPG. These give distance
between repaired and replanned plans and original plans,
showing that for both planners repair improves stability.

7 Related Work
Previous extensions of the SHOP framework include
HOTRiDe (Ayan et al. 2007) and SHOPLIFTER!(Kuter
2012). SHOPLIFTER augments SHOP2’s HTN representa-
tions and planning capabilities with a constraint-based for-
malism for HTNs, inspired by UMCP (Erol, Hendler, and
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Repair Time Replan Time
mean std mean std

Problem

1 0.02 0.00 0.02 0.00
2 0.02 0.00 0.02 0.00
3 0.02 0.00 0.02 0.00
4 0.02 0.00 0.02 0.00
5 0.02 0.00 0.02 0.00
6 0.02 0.00 0.02 0.00
7 0.02 0.00 0.02 0.00
8 0.02 0.00 0.02 0.00
9 0.02 0.00 0.02 0.00
10 0.02 0.00 0.02 0.00
11 0.02 0.00 0.02 0.00
12 0.02 0.00 0.02 0.00
13 0.02 0.00 0.02 0.00
14 0.02 0.00 0.02 0.00
15 0.02 0.00 0.02 0.00
16 0.02 0.00 0.02 0.00
17 0.02 0.00 0.02 0.00
18 0.03 0.00 0.03 0.00
19 0.03 0.00 0.04 0.01
20 0.05 0.01 0.04 0.01

Table 1: LPG replan and repair times for Rovers domain.
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Nau 1994). These constraints provide the required repre-
sentation conditions that need to hold during the execu-
tion of a task network as well as action post-conditions and
plan goals. Neither HOTRiDe nor SHOPLIFTER provide the
guarantees of correctness we give here.

Warfield et al. (2007) developed a replanning algorithm
called RepairSHOP, similar to HOTRiDe. They differ in
their dependency representations. RepairSHOP uses a more
general and expressive data structure, a “GoalGraph.” Al-
though GoalGraphs would enable the planner to produce
explanations for task dependencies and replan using those
explanations, it is not clear how the two approaches com-
pare in terms of expressive power and efficiency. Unfortu-
nately, RepairSHOP was not available for use in our com-
parison experiments. Schattenberg (2009) also uses a partial-
order causal link (POCL) formalism, a generalization of our
totally-ordered causal links. Their repair strategies resemble
ours, but do not attempt to maintain stability.

Recent work by Höller, et al. (2018) works from a UMCP-

like POCL basis, rather than forward planning as we do.
They pose the plan repair problem as a constrained HTN
planning problem, by transforming the original problem de-
scription. This approach allows them to use a “stock” plan-
ner for repair, not requiring a separate repair algorithm. Most
interestingly, they attempt to fully honor the constraints im-
plied by the task networks, in a way we do not. Arguably
this is more correct, but equally it could be argued that this
allows only repairs with counterintuitive limitations. Their
system requires that all completed actions be part of any
task network constructed in repair. We show the difference
between our approaches in Figure 8. Consider the simple
plan shown as 8(a), and a case where after the execution of
a3 there is a disturbance that prevents executing b1. Both
systems can generate the repair in 8(b). But now consider
what happens if a disturbance after a2 makes a3 impossible.
SHOPFIXER could generate the repair in 8(c), but Höller,
et al.’s system would regard it as incorrect, because the re-
paired plan tree does not include a1 or a2.

Bidot, Schattenberg, and Biundo (2008) present a plan
repair method based on plan-modification. Their approach
identifies disturbances that might break the causal depen-
dencies in the search space of a HTN planner and pro-
duces alternatives to patch the plans. Both Bidot, Schat-
tenberg, and Biundo and our work has been based on the
ideas from (Ayan et al. 2007; Wilkins and desJardins 2001;
Kambhampati and Hendler 1992). Our work uses the SHOP3
framework to generate plan repairs on the fly, so SHOP-
FIXER’s data dependencies and repairs are incorporated in
the planning algorithm: SHOPFIXER interleaves planning,
plan repair, and execution using the same data structures.

Although Bidot, Schattenberg, and Biundo’s method uses
the ADL-like dialect of PDDL, this seems to be limited to
the primitive tasks and state representations. SHOPFIXER
supports plan-repair over universally and existentially quan-
tified expressions, increasing the HTN models that can be
repaired by SHOPFIXER both theoretically and practically.

Wang and Chien describe a planning algorithm (1997)
for replanning HTNs as formalized by Erol, Hendler, and
Nau (1994). They extend the DPLAN algorithm (Chien et al.
1996) to replanning. Their approach is similar to HOTRiDe,
but relies on the assumption that facts can be restored to their
initial state when the plan fails. We did not make this as-
sumption since it does not fit many real world domains.

8 Conclusions
Our work addressed the issue of achieving plan stability
through plan repair, as opposed to ab initio replanning. Our
results with both SHOP3 and LPG-repair confirm, refine, and
extend earlier results on repair vs. replanning from Fox et
al. (2006). The one exception is that we did not universally
find a computational advantage for LPG-repair over replan-
ning: this is likely an artifact of the test domains.

Going beyond previous work, we have provided a method
for minimal-perturbation replanning for SHOP3 and shown
it to be sound and complete, thus going beyond previous
work in this area (Ayan et al. 2007; Kuter 2012). However,
while sound and complete, SHOPFIXER is built on a method
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Figure 6: SHOP3 replan NCD versus repair NCD.
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Figure 7: LPG replan NCD versus repair NCD.
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Figure 8: Höller et al.’s plan repair versus SHOPFIXER.

of detecting plan flaws that is complete but unsound, mean-
ing that it can do extra work in some cases. We have also
shown empirically that the bookkeeping overhead required
by SHOPFIXER does not unduly burden planning.

In future work, we wish to extend the applicability of our
techniques. SHOP3 is often used precisely because it can
handle problems beyond PDDL’s expressive power: the pre-
conditions language has full Prolog expressive power, do-
mains of quantification may not be finite, and preconditions
can invoke arbitrary code. We would like to extend SHOP-
FIXER’s expressiveness beyond the current “PDDL-like”
limitations. Also, we would like to extend SHOPFIXER’s sta-
bility: at present, if SHOPFIXER repairs a task T1 generated
by a method M → T1 . . ., then the previous expansion of
T1’s right siblings is lost. HOTRiDe (Ayan et al. 2007) did
not have this limitation, but as mentioned earlier, used POCL

planning, and is not known to be sound and complete. We
are investigating analogical replay (Goldman et al. 2000) to
retain existing plan suffixes.

A final remark: our work highlights the need for a more
robust notion of “planning domain.” A PDDL domain is only
a way to use the same set of operators in multiple problems;
it does not capture state constraints. For example, the fact
that all logistics networks are fully connected, and all links
are symmetric is not captured in PDDL. Hoffmann (2005)
had to find these properties by empirical analysis of prob-
lem instances. Such constraints are captured only implicitly
in bespoke programs that generate problems. This substan-
tially complicated the process of assembling disturbance op-
erators, and led us to rule out addressing goal changes. AI
planning needs a more robust notion of domain to address
issues like plan repair, planning and execution, learning, etc.
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