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Abstract
This paper describes our approach, SHOPFIXER, to plan re-
pair in Hierarchical Task Network (HTN) planning. We de-
veloped SHOPFIXER in the SHOP3 HTN planning frame-
work, extending SHOP3’s HTN language and theorem-
proving capabilities in several ways. Unlike many existing
HTN plan repair approaches that depend on chronological
backtracking, SHOPFIXER uses backjumping techniques to
efficiently, correctly and stably repair the hierarchical plans,
where stability means with minimal perturbation to the origi-
nal plan. We describe our new plan repair method and present
experimental results in a number of IPC domains, demon-
strating that it generates plans with limited perturbations, and
that its plan repair is more computationally efficient than re-
planning. We compare our results with earlier experimental
results from Fox, et al. on plan repair and plan stability. Our
results confirm theirs, and generalize them. Specifically, we
generalize their LPG-repair algorithm to handle plan upsets
during execution, and evaluate it in such situations.

1 Introduction
Plan repair has been shown to provide advantages over gen-
erating new plans from scratch both in terms of planning
runtime and in terms of plan stability – the amount of plan
content that is retained between the original and repaired
plans (Fox et al. 2006). Fox et al. demonstrated that plan
repair could provide new plans faster, and with fewer revi-
sions, than replanning ab initio in the face of disruptions.
They use the term “stability” to refer to the new plan’s sim-
ilarity to the old one, by analogy to the term from control
theory. In other prior work, the term “minimal perturbation”
has been used synonymously. Plan stability is particularly
important for human interaction: users are confused by radi-
cal changes to plans introduced in response to trivial upsets.

Previous work on plan stability was limited in that it could
only handle plan upsets introduced by modifications to the
initial state of the plan (Fox et al. 2006). Our work extends
Fox et al.’s approach based on methods from existing plan-
repair works such as Wilkins and desJardins (2001), Ayan
et al. (2007), Bidot, Schattenberg, and Biundo, and Kuter
(2012) in order to handle disturbance that can occur any-
where in the course of plan execution. One way in which
SHOPFIXER is less general than Fox et al.’s is that it does
not handle goal modification. We chose not to do this be-
cause we did not have a good metric for the size of a goal

modification, and it is even less well supported by PDDL
than are disturbances. Also, most other repair work is lim-
ited to disturbance handling.

In this paper, we describe SHOPFIXER, a new method
for repairing plans generated by the forward-searching HTN
planner, SHOP3. Our method uses a graph of causal links
and task decompositions to identify a minimal subset of the
plan that must be fixed in plan repair. We also extend the no-
tion of plan repair stability introduced by Fox et al. (2006),
and further develop their methods and experiments, which
demonstrated the advantages of plan repair over replanning.

Contributions of this work are as follows:

• We describe a new technique, SHOPFIXER, and our ex-
tensions to the well-known totally-ordered HTN planning
formalisms (Ghallab, Nau, and Traverso 2004; Goldman
and Kuter 2019). This approach uses causal links for plan
repair in SHOP3. Unlike previous such methods (Ayan et
al. 2007; Kuter 2012) of the same vein, we show that plan
repair and stability in SHOPFIXER is sound and complete,
and that its flaw detection method is complete, but un-
sound: a conservative over-approximation.

• We show how to use NCD (Normalized Compression
Distance) for evaluating plan stability and demonstrate
how this measure refines plan stability significantly over
the existing use of action distance (Srivastava et al. 2007)
in (Fox et al. 2006) (see Figure 5).

• To support experimentation, we have extended Fox et al.’s
LPG variant (“LPG-repair”) to be able to repair plans up-
set in the middle of execution: previously it was only able
to react to changes in the initial state, conceptually be-
tween the completion of planning, and the commence-
ment of execution.

• In three different planning benchmark domains with dif-
ferent characteristics and over 700 planning and plan-
repair planning problems in total, our experimental results
confirm earlier results on the general advantages of plan
repair over replanning, both in terms of computational ef-
fort, and in terms of plan stability. SHOPFIXER shows
more stable and consistent effect on plan stability mea-
sured by NCD than does LPG-repair since SHOPFIXER
is a lifted planner and can find plan modifications that are
not distinguishable to LPG-repair (cf. Figures 6 and 7).
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Listing 1: Effects expressions
<literal>* |
(forall (<variable>?) <literal>*) |
(when <GD> <literal>*),

• Our experimental results support the utility of our replan-
ning method for forward HTN planning. The SHOPFIXER
method is somewhat at odds with the method of Höller et
al. (2018), which uses a subtly different definition of HTN
plan repair. We discuss these differences with the pros and
cons of both approaches.

2 Preliminaries
Our work is done in the context of the SHOP3 HTN plan-
ner (Goldman and Kuter 2019), successor to the earlier HTN
planners, SHOP2 (Nau et al. 2003), and SHOP (Nau et al.
1999). Ghallab, Nau, and Traverso (2004) describe a re-
stricted case of HTN planning called Total-order Simple
Task Network (TSTN) planning, a formalization of the orig-
inal SHOP HTN planning algorithm.1 TSTN is a restricted
version of HTN planning in which each method’s subtasks
are totally ordered, each method’s constraints consist solely
of preconditions, and no critics are allowed.

TSTN planning is defined over a language, L, the set of
all literals in a function-free first-order language over a finite
domain of quantification, ω(L). A state, s ∈ S(L) is an
assignment of truth values to every positive literal in L.

A TSTN Planning domain for a language, L, is a tu-
ple2: D(L) = 〈tasks(D(L), ops(D(L)),meths(D(L))〉 of
a set of tasks, operators, and methods. Each operator o ∈
ops(domain) is a triple

o = (name(o), precond(o), effects(o)),

where name(o) is a task (see below), and precond(o) and
effects(o) are sets of literals called o’s preconditions and ef-
fects. An action α is an instance of an operator. If a state s
satisfies precond(α), then α is executable in s, producing the
state γ(s, α) = (s−{all negated atoms in effects(α)})∪{all
non-negated atoms in effects(α)}.

In SHOPFIXER, we extend this definition to PDDL2.1
actions, but without functional and arithmetic expressions.
precond(o) is a logical expression as defined as <GD> in
PDDL2.1 grammar (Fox and Long 2003). effects(o) is de-
fined as in PDDL 2.1 excluding durative and functional ex-
pressions: see Listing 1.

A task is a symbolic representation of an activity. Syntac-
tically, it is an expression τ = t(x1, . . . , xq) where t is a
symbol called τ ’s name, and each xi is an element of ω(L).
If t is also the name of an operator, then τ is primitive;
otherwise τ is nonprimitive (or “complex”): tasks(D) =
prims(D) ∪ comps(D). Intuitively, primitive tasks can be
instantiated into actions, and nonprimitive tasks need to be
decomposed (see below) into subtasks.

1SHOP3 and SHOP2 are more expressive extensions of SHOP.
2We leave the language arguments implicit in the future.

A method, m, specifies how to decompose a task:
m = 〈name(m), task(m), precond(m), subtasks(m)〉

where name(m) is m’s name and argument list, task(m) ∈
tasks(D) is the task m can decompose, precond(m) is a
set of preconditions, and subtasks(m) = (t1, . . . , tj) , ti ∈
tasks(D), the expansion of task(m), a sequence of subtasks.

Typically, we work with domain descriptions, collections
of task, operator, and method schemas, with variables for
some of the name, precondition, and effect arguments.

A TSTN planning problem is a three-tuple P =
〈s0, T0,D〉, where s0 is an initial state, T0 is a sequence of
ground tasks, the initial task list, and D is a TSTN domain.

If T0 is empty, then P ’s only solution is the empty plan
π = ε, and π’s derivation (the sequence of actions and
method instances used to produce π) is δ = ε. We say that δ
is executable in the current state, yielding no state changes.

If T0 is nonempty (i.e., T0 = 〈t1, . . . , tk〉 for some k >
0), and s0 is the current state, then let T ′ = 〈t2, . . . , tk〉.
If t1 is primitive and there is an action α with name(α) =
t1, and if α is executable in s0 producing a state s1, and if
P ′ = 〈s1, T ′,D〉 has a solution π with derivation δ, then
the plan α • π is a solution to P (where • is concatenation)
whose derivation is α • δ. In that case, α • δ is executable
in s0. If t1 is nonprimitive and there is a method instance
m such that task(m) = t1, and if s0 satisfies precond(m),
and if P ′ = 〈s0, subtasks(m) • T ′,D〉 has a solution π with
derivation δ, then π is a solution to P and its derivation is
m • δ. The nonprimitive task task(m) is executable, if s0
satisfies precond(m) and its subtasks(m) are executable in
s0. By induction, the derivation m • δ is executable in s0, if
δ is executable. A sequence of tasks t1t2 . . . tn is executable
in s0 if t1 is executable in s0, the state after executing t1 is
s1, and t2 . . . tn is executable in s1.

The definition of a derivation, above, defines a derivation
tree (or, less formally, a plan tree), with edges from complex
tasks to the subtasks in their expansion, and with the primi-
tive tasks of the plan as their leaves. We extend the plan trees
by adding cross edges from primitive tasks that establish lit-
erals to the nodes that consume them in preconditions. While
the establishers are all primitives, the consumers may be ei-
ther primitives or complex tasks (note that the complex task
as such does not consume the precondition, it is the method
whose task network is used that has the preconditions).

A plan disturbance is an unexpected change in the world
state after the execution of a prefix of the plan. A plan dis-
turbance ξ(π), for a TSTN plan, π = 〈α1 . . . αn, 〉 is a tuple
ξ(π) = 〈pred(ξ(π)), effects(ξ(π))〉, where pred(ξ(π)) =
αk is an action in π3 and effects(ξ(π)) is a set of ground
effects as in a STRIPS operator.

We assume an execution model that is a very simple ex-
tension of classical planning: if a task’s preconditions hold
when it is started, then the task is executable. An action that
is executable transforms the state into a new state by ap-
plying its effects to the state in which it was executed. The
effects of plan disturbance ξ(π) are applied in the state fol-
lowing the execution of pred(ξ(π)).

3We also permit the special value ε for disturbances that occur
before any actions.
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Listing 2: “PDDL methods” for SHOP3.

<method> ::= (:method <method-task>
:method-name <symbol>
:variables <typed-list (variable)>
:precondition <GD>
:task-net <task-net>)

<method-task> ::= (<task-symbol> <task-arg>∗)
<task-arg> ::= <name> | [<variable> -<type>]
<task-net> ::= (<task-net-component>+)
<task-net-component> ::= (<task-symbol>

<method-task-arg>∗)
<method-task-arg> ::= <term>

3 Our SHOP3 Extensions
Our approach to plan repair is based on the existing SHOP3
planner (Goldman and Kuter 2019), with some extensions,
and previous work on plan repair in UMCP-style HTN plan-
ners (Ayan et al. 2007). Two key extensions are the addition
of PDDL handling to SHOP3, and the addition of an alter-
native search engine that can perform backjumping. We add
PDDL handling for two reasons: (1) PDDL has a clearer,
and easier to handle semantics than does SHOP3’s language:
in theory SHOP3’s language may comply with PDDL se-
mantics, but in practice, it has the full expressive power of
a temporal extension of Prolog. (2) Incorporating PDDL al-
lows us to handle benchmarks and make comparisons.
PDDL in SHOP3 Now SHOP3 can plan with both native op-
erators and PDDL actions, and can incorporate PDDL do-
mains in its own domains by reference. Additionally, we
have developed “PDDL methods” for SHOP3.

The STRIPS dialect of SHOP3 is as follows: (1)
primitives are PDDL typed STRIPS operators (i.e.,
equivalent to PDDL requirements of :typing
:negative-preconditions), and (2) the method
grammar is given in Listing 2. In that grammar,
<GD> and <typed list (variable)> are as
defined in the PDDL 2.1 grammar (Fox and Long
2003). <task-symbol> is the same as PDDL 2.1’s
<action-symbol>, however additionally each
<task-symbol> is classified as either primitive or
complex. <method-task-args> and arguments in
preconditions, if variables, must be elements of the pa-
rameter list. <method-name> is also equivalent to
<action-symbol>: it designates a unique method for
achieving the <task-spec>. This is equivalent to the
following limitations:

1. Typed STRIPS dialect of PDDL for the primitives;
2. Conjunctive preconditions for the methods, no SHOP3

special language features.
3. For methods, only variables in the task parameters and in

the :variables list are scoped over the preconditions
and effects (standard SHOP3 has Prolog-style scoping).

4. All tasks will be ground when added to the plan, and all
task parameters (including those for complex tasks) will
be ground before the preconditions are checked.

We will initially explain our approach for the simple
case of the STRIPS dialect, and then will extend to “ADL
SHOP3.” The ADL dialect of SHOP2 uses as operators
PDDL actions in the ADL dialect, and permits ADL-style
quantification in method preconditions (but not functional
terms or numerical fluents). So we add to the method precon-
ditions grammar the ability to use forall and exists,
and the full set of boolean connectives.

Note that neither of our SHOP dialects supports SHOP3’s
:unordered construct, which permits partial ordering in
a method’s task network. We are interested in doing so, but
this causes issues with the semantics of plan executability
that we discuss further in our conclusions.
Backjumping Another key extension to SHOP3 was to add
the ability to do backjumping search. Ordinarily, if SHOP3
makes a poor decision at a state, the search process will lead
to dead ends, and it must back up to that state and resume
searching with a different decision. The simplest approach
to “backing up” is chronological backtracking: undoing the
most recent decision in the search and trying an alternative.
However, in some problems, it is possible to determine that
the most recent decision was not relevant to reaching the
dead end. Backjumping (Gaschnig 1979) exploits such in-
formation by skipping over irrelevant decisions and back-
tracking directly to the most recent relevant decision, d, un-
doing all the decisions above d in the search stack.

4 Plan Repair
The basic idea behind our plan repair approach is very sim-
ple: when a disturbance is introduced into the plan, SHOP-
FIXER will find the minimal subtree of the plan tree that
contains the node whose preconditions are clobbered by that
disturbance: the failure node. If there is no such node, then
the disturbance does not interfere with the success of the
plan. SHOPFIXER will then repair the plan, starting with the
minimal subtree.

To find the minimal subtree around a failure node, SHOP-
FIXER finds the first task in the plan that is potentially “clob-
bered” (rendered un-executable) by that disturbance, and
restarts the planning search from that task’s immediate par-
ent in the HTN plan (since that was the point at which that
task was chosen for insertion into the plan). This plan repair
is done by backjumping into the search stack for SHOP3 and
reconstructing the compromised subtree without the later
tasks (see the discussion in the conclusions, Section 8). Note
that the first clobbered task may be either a primitive task or
a complex task. Furthermore, if p is the parent of child c in
an HTN plan, then p’s preconditions are considered chrono-
logically prior to c’s, because it is the satisfaction of p’s pre-
conditions that enables c to be introduced into the plan: if
both p and c fail, and we repair only c, we will still have
a failed plan, because after the disturbance, we are not li-
censed to insert c or its successor nodes.

SHOPFIXER restarts the planning search by backjumping
to the corresponding entry in the SHOP3 search stack, which
it retains, and updating the world state at that point with
the effects of the disturbance. When restarting the planning
search, SHOPFIXER “freezes” the prefix of the plan that has
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Figure 1: A high-level illustration of causal links over a task hier-
archy generated by SHOP3.

already been executed, as well as the deviation and its ef-
fects. It may backjump to decisions prior to the deviation,
for example, if the immediate parent of the failed task is the
top level task of the problem, but it cannot undo the effects of
an action that is already done. SHOPFIXER returns a repaired
plan that is made up of the prefix before the disturbance, the
disturbance, and the repaired suffix.

From this simple outline, it can be seen that the critical re-
quirement for plan repair is to find the chronologically first
clobbered task. For the STRIPS dialect of SHOP3, we will
see that we can provide sound and complete detection of the
first clobbered task. However, we cannot do this efficiently
for the ADL dialect, because of conditional execution. For
the ADL dialect, we can only provide completeness (if a is
the first clobbered task in the plan, we will find it or a pre-
decessor), and not soundness (a may appear before the first
clobbered task, but no task before it is clobbered). For this
reason, it follows from the soundness and completeness of
SHOP3 that our plan repair algorithm is sound and complete,
but it may do more work than is necessary.

SHOPFIXER finds the first clobbered task using causal
links. We have enhanced SHOP3 so that whenever it inserts
a task into the plan, it associates with the task causal links to
its preconditions. A causal link is a triple, 〈e, p, t〉, where e
is the action that established the ground literal p, and t (the
“consumer”) is a task that requires p in its preconditions.
Figure 1 illustrates an abstract depiction of a graphical rep-
resentations of causal links over a task hierarchy generated
by SHOP3. SHOP3 maintains a link only for the latest es-
tablisher of p relative to t, as is required for soundness. The

causal links are hashed with p as the key, so that if a distur-
bance clobbers p, SHOPFIXER can find the first consumer.

Given the simplicity of finding the first clobbered con-
sumer from a proposition, p, the soundness and complete-
ness of this task, depends on the soundness and complete-
ness of causal links. Completeness is readily established,
since it requires simply recording the establisher of each
proposition or, in worst case, searching backwards through
the state trajectory of the plan, which SHOP3 maintains (im-
plicitly) for purposes of backtracking/backjumping.

Soundness is also immediate, with the exception of the
complex tasks. For a complex task, there may be variables
(in the :variables property of the method, see Listing 2)
not bound until after the method is chosen. Those variables
are effectively existentially quantified (their bindings come
from a refutation of the negation of the preconditions), and
SHOP3 records causal links for the grounded preconditions.
So, for example, if we have a method like the following:
(:method (achieve-goals)

:variables
(?obj - objective ?mode - mode)

:precond
(communicate_image_data ?obj ?mode)

:task-net
(:ordered
(communicated_image_data

?obj ?mode)
(achieve-goals)))

which chooses an objective and a mode from the goals, and
SHOP3 chooses obj1 for ?obj and h_res for ?mode,
then it will record the causal link

〈e,(communicated image data obj1 h res), t〉
Assuming that a disturbance countermands this task
(i.e., deletes (communicated image data obj1
h res)), then arguably treating t as clobbered is incorrect,
because the task could be retained, and query for
(communicate_image_data ?obj ?mode)

rather than replanning its parent. However, in practice,
SHOP3 binds these variables concurrently with choosing the
task, so if this is unsound, it is a benign unsoundness: when
replanning from t’s parent, SHOP3 will first consider alter-
native bindings for ?obj and ?mode, and any siblings to
the right of this task will be replanned anyway.

We have shown that finding the first clobbered task can
be performed in a sound and complete way for the STRIPS
dialect of SHOP3. We use this to establish the soundness
and partial completeness of the ADL dialect. Recall that
ADL adds logical connectives, quantification (forall and
exists), and conditional effects. It is conceptually simple
to account for the logical connectives and quantification, be-
cause of PDDL’s finite domain of quantification:
AND handled as above;
NOT Negated ground literals can be handled identically to

positive ground literals, complex negations are rewritten
to drive the negations inward;

OR take the causal links from one conjunct or another;
forall over a fixed, finite domain, a conjunction.
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exists over a fixed, finite domain, disjunction.

imply this is equivalent to a disjunction.

Note that the use of disjunction already compromises the
soundness of finding the first clobberer, because a task with
the precondition (or p q) that is executed in a state sat-
isfying p ∧ q, will get only one causal link, for p or q, so it
may be incorrectly retrieved if only one of the two is deleted
by a disturbance. In practice, we have not found this un-
soundness to be problematic, but it is certainly possible that
it would be, particularly in a domain with existentially quan-
tified preconditions ranging over a large set, such as “there
must be an employee sitting at a monitoring station,” if there
are many employees, many monitoring stations, and more
than one employee at a single monitoring station.

A second cause of unsoundness comes from conditional
effects. Recall that conditional effects are of the form
(when p e), where p are the secondary preconditions for
e relative to the operator with this effect. When SHOP3 adds
a to the plan, it will add causal links for p relative to every
e that is instantiated, and (not p) for every e not instan-
tiated (the latter happens because of the handling of quanti-
fiers that contain the when effect). In other words, instead
of capturing the causal links for “every effect of a that is
used in the plan,” SHOPFIXER uses links for “the secondary
preconditions that cause a to have exactly this set of effects.”

We tolerate the unsoundness in order to avoid reasoning
about arbitrary logic in preconditions, and chaining con-
ditional effects through multiple stages in a plan. Trying
to compute the clobbering conditions exactly would in the
worst case involve solving SAT problems. Section 6 illus-
trates how this tradeoff plays out empirically: to date it
seems benign – the savings for plan repair are still substan-
tial, and the cost of maintaining the causal links manageable.

5 LPG Extensions
Recall that Fox, et al. (2006) were limited to repairing/re-
planning only in response to changes in the initial state,
rather than changes in the middle of plan execution. We
have extended their version of LPG with a preprocessor
that handles disturbances in the middle of plans. Using a
modified initial state I ′ and/or goal condition set G′ along
with plan π that solves an original classical planning prob-
lem P = 〈F,A, I,G〉, they defined the replanning prob-
lem as Preplan = 〈F,A, I ′, G′〉 and the repair problem as
Prepair = 〈F,A, I ′, G′, π〉. However, just as SHOPFIXER
can begin the process at an intermediate state in the plan

sdiv = ad−1 (ad−2 (. . . (a1 (I)) . . .))

where the divergence occurs just before executing action
ad, we also update the initial state in LPG to be sdiv . Then
the replanning problem is simply Preplan = 〈F,A, sdiv, G〉
and the repair problem is Prepair =

〈
F,A, sdiv, G, πd..|π|

〉
where πi..j is the subsequence of the plan π from actions ai
to aj , inclusive. That is, LPG begins the planning process in
the state where the divergence occurs and repairs the remain-
ing actions in the plan (without the task network information
that is available to SHOPFIXER).

6 Experiments
To assess the efficiency and correctness of our approach we
have conducted preliminary experiments with the “Open-
stacks”4, “Rovers”5, and “Satellite”6 domains from the IPC.
We chose these domains for their use of the ADL dialect of
PDDL. Our results show a substantial savings for using plan
repair over replanning from scratch in an unexpected state
during plan execution.

Problems for experimentation were constructed from the
IPC problems, giving a sliding scale of difficulty for each
domain. For each domain, we defined a set of disturbance
pseudo-actions, which involved events like shipping failures
(in Openstacks), loss of samples, obstructions to line of sight
(in Rovers), direction changes, decalibrations, and power
loss (in Satellite). The disturbance actions had to be care-
fully written in order to not render a problem unsolvable, or
to change the class of the problem. For the notion of class
of the problem, we drew on Hoffmann’s (Hoffmann 2005)
analysis. For example, we avoided breaking the symmetry of
the can_traverse relationship in the Rovers problems.
This property is not formalized in any way in the domain
(PDDL does not support higher-order assertions about prob-
lems), but it is present in all of the problems nevertheless.
Changing the character of the problems with disturbances
would render the repair and replanning less directly compa-
rable. HTN domains for these problems, the problems them-
selves, disturbance actions, and raw results are available on
the web (Goldman, Kuter, and Freedman 2020).
Computational Efficiency Figure 2 shows the comparison
between the time to find the original plan and the time to
repair the plan for SHOP3. Our experiments with SHOP3
support Fox et al.’s argument for plan repair over replan-
ning, and also show the value of our replanning method
for SHOP3. For each problem instance along the x-axis, the
boxes mark the lower quartile q1, median, and upper quar-
tile q3 of the set of times taken per run T . The extended
whiskers indicate the interval of times taken per run that are
within 1.5 times the interquartile range from these quartiles;
that is, a line from the minimum to the maximum of W =
{t ∈ T |q1 − 1.5 (q3 − q1) ≤ t ≤ q3 + 1.5 (q3 − q1)}. Any
runs whose times are outside W are marked with a dot. The
results here are for 10 runs for each problem instance of
Openstacks, Rovers, and Satellite. Each run has a randomly
generated deviation that clobbers the preconditions for some
action in the plan suffix, rendering the plan un-executable or
preventing it from achieving the goal. Note that Openstacks
runtimes, unlike those for the other two domains, are plotted
on a logarithmic scale, because of their high variance.

Recall that in order to make a plan repairable, SHOP3
must save much more information in the course of planning.
In particular, it must build a plan tree that records causal
links between actions and the tasks that consume their ef-
fects. In order to determine whether our plan repair is sim-
ply a tradeoff between spending more time in planning to
save time in plan repair, we compare the runtime of generat-

4
http://icaps-conference.org/ipc2008/deterministic/

5
http://ipc02.icaps-conference.org/

6
http://ipc04.icaps-conference.org/deterministic/
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Figure 2: Comparing plan repair time to replanning, SHOP3.
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Figure 3: Overhead when planning for repair-ability, SHOP3.
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Figure 4: Comparing Openstacks repair time to replanning, LPG.

ing repairable plans with the additional information needed
for replanning together with the runtime for generating plans
without the additional information. Results are in Figure 3.

We ran the same problems and deviations using LPG-
repair (henceforth “LPG”), with the preprocessing described
above. Results on Openstacks, in Figure 4, confirm those
with SHOP3: they show a high variance (Openstacks run-
times are plotted logarithmically), and show a clear advan-
tage for plan repair, in terms of runtime. Results on Rovers
(Table 1) and Satellite on the other hand, are equivocal,
showing no clear advantage for repair over replanning. They
exhibit a floor effect: runtimes for these problems are not
significant for LPG. We have omitted the table for Satellite
to save space: it is essentially identical to that for Rovers.

Plan Stability Metric Another proposed advantage of plan
repair over replanning is stability: repaired plans will be
more similar to the original plans than entirely new plans
from replanning. In their paper, Fox et al. (2006) measure
plan stability using Action Distance (AD). Briefly, this is
the cardinality of the symmetric set difference of the actions
in the two plans. We have argued elsewhere (Goldman and
Kuter 2015) that there are a number of problems with this
definition: it’s insensitive to the ordering of steps in the plan,
it treats (drive truck1 src dest) and (drive
truck2 src dest) as just as different as (drive
truck1 src dest) and (navigate vaporetto1
src dst), etc.. We propose the use of Normalized Com-
pression Distance (NCD) as a better alternative to AD. For
an example of why we prefer NCD, see Figure 5. One can
easily see that AD provides a much less stable measure of
distance, so we use only NCD going forward.
Plan Stability Our experiments with SHOP3 and LPG con-
firm and extend the Fox et al. (2006)’s results: extend be-
cause we support plan upsets anywhere during execution.
Our results on plan stability, measured using NCD are shown
in Figure 6 for SHOP3, and 7 for LPG. These give distance
between repaired and replanned plans and original plans,
showing that for both planners repair improves stability.

7 Related Work
Previous extensions of the SHOP framework include
HOTRiDe (Ayan et al. 2007) and SHOPLIFTER!(Kuter
2012). SHOPLIFTER augments SHOP2’s HTN representa-
tions and planning capabilities with a constraint-based for-
malism for HTNs, inspired by UMCP (Erol, Hendler, and
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Repair Time Replan Time
mean std mean std

Problem

1 0.02 0.00 0.02 0.00
2 0.02 0.00 0.02 0.00
3 0.02 0.00 0.02 0.00
4 0.02 0.00 0.02 0.00
5 0.02 0.00 0.02 0.00
6 0.02 0.00 0.02 0.00
7 0.02 0.00 0.02 0.00
8 0.02 0.00 0.02 0.00
9 0.02 0.00 0.02 0.00
10 0.02 0.00 0.02 0.00
11 0.02 0.00 0.02 0.00
12 0.02 0.00 0.02 0.00
13 0.02 0.00 0.02 0.00
14 0.02 0.00 0.02 0.00
15 0.02 0.00 0.02 0.00
16 0.02 0.00 0.02 0.00
17 0.02 0.00 0.02 0.00
18 0.03 0.00 0.03 0.00
19 0.03 0.00 0.04 0.01
20 0.05 0.01 0.04 0.01

Table 1: LPG replan and repair times for Rovers domain.
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Nau 1994). These constraints provide the required repre-
sentation conditions that need to hold during the execu-
tion of a task network as well as action post-conditions and
plan goals. Neither HOTRiDe nor SHOPLIFTER provide the
guarantees of correctness we give here.

Warfield et al. (2007) developed a replanning algorithm
called RepairSHOP, similar to HOTRiDe. They differ in
their dependency representations. RepairSHOP uses a more
general and expressive data structure, a “GoalGraph.” Al-
though GoalGraphs would enable the planner to produce
explanations for task dependencies and replan using those
explanations, it is not clear how the two approaches com-
pare in terms of expressive power and efficiency. Unfortu-
nately, RepairSHOP was not available for use in our com-
parison experiments. Schattenberg (2009) also uses a partial-
order causal link (POCL) formalism, a generalization of our
totally-ordered causal links. Their repair strategies resemble
ours, but do not attempt to maintain stability.

Recent work by Höller, et al. (2018) works from a UMCP-

like POCL basis, rather than forward planning as we do.
They pose the plan repair problem as a constrained HTN
planning problem, by transforming the original problem de-
scription. This approach allows them to use a “stock” plan-
ner for repair, not requiring a separate repair algorithm. Most
interestingly, they attempt to fully honor the constraints im-
plied by the task networks, in a way we do not. Arguably
this is more correct, but equally it could be argued that this
allows only repairs with counterintuitive limitations. Their
system requires that all completed actions be part of any
task network constructed in repair. We show the difference
between our approaches in Figure 8. Consider the simple
plan shown as 8(a), and a case where after the execution of
a3 there is a disturbance that prevents executing b1. Both
systems can generate the repair in 8(b). But now consider
what happens if a disturbance after a2 makes a3 impossible.
SHOPFIXER could generate the repair in 8(c), but Höller,
et al.’s system would regard it as incorrect, because the re-
paired plan tree does not include a1 or a2.

Bidot, Schattenberg, and Biundo (2008) present a plan
repair method based on plan-modification. Their approach
identifies disturbances that might break the causal depen-
dencies in the search space of a HTN planner and pro-
duces alternatives to patch the plans. Both Bidot, Schat-
tenberg, and Biundo and our work has been based on the
ideas from (Ayan et al. 2007; Wilkins and desJardins 2001;
Kambhampati and Hendler 1992). Our work uses the SHOP3
framework to generate plan repairs on the fly, so SHOP-
FIXER’s data dependencies and repairs are incorporated in
the planning algorithm: SHOPFIXER interleaves planning,
plan repair, and execution using the same data structures.

Although Bidot, Schattenberg, and Biundo’s method uses
the ADL-like dialect of PDDL, this seems to be limited to
the primitive tasks and state representations. SHOPFIXER
supports plan-repair over universally and existentially quan-
tified expressions, increasing the HTN models that can be
repaired by SHOPFIXER both theoretically and practically.

Wang and Chien describe a planning algorithm (1997)
for replanning HTNs as formalized by Erol, Hendler, and
Nau (1994). They extend the DPLAN algorithm (Chien et al.
1996) to replanning. Their approach is similar to HOTRiDe,
but relies on the assumption that facts can be restored to their
initial state when the plan fails. We did not make this as-
sumption since it does not fit many real world domains.

8 Conclusions
Our work addressed the issue of achieving plan stability
through plan repair, as opposed to ab initio replanning. Our
results with both SHOP3 and LPG-repair confirm, refine, and
extend earlier results on repair vs. replanning from Fox et
al. (2006). The one exception is that we did not universally
find a computational advantage for LPG-repair over replan-
ning: this is likely an artifact of the test domains.

Going beyond previous work, we have provided a method
for minimal-perturbation replanning for SHOP3 and shown
it to be sound and complete, thus going beyond previous
work in this area (Ayan et al. 2007; Kuter 2012). However,
while sound and complete, SHOPFIXER is built on a method
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Figure 6: SHOP3 replan NCD versus repair NCD.
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Figure 7: LPG replan NCD versus repair NCD.
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Figure 8: Höller et al.’s plan repair versus SHOPFIXER.

of detecting plan flaws that is complete but unsound, mean-
ing that it can do extra work in some cases. We have also
shown empirically that the bookkeeping overhead required
by SHOPFIXER does not unduly burden planning.

In future work, we wish to extend the applicability of our
techniques. SHOP3 is often used precisely because it can
handle problems beyond PDDL’s expressive power: the pre-
conditions language has full Prolog expressive power, do-
mains of quantification may not be finite, and preconditions
can invoke arbitrary code. We would like to extend SHOP-
FIXER’s expressiveness beyond the current “PDDL-like”
limitations. Also, we would like to extend SHOPFIXER’s sta-
bility: at present, if SHOPFIXER repairs a task T1 generated
by a method M → T1 . . ., then the previous expansion of
T1’s right siblings is lost. HOTRiDe (Ayan et al. 2007) did
not have this limitation, but as mentioned earlier, used POCL

planning, and is not known to be sound and complete. We
are investigating analogical replay (Goldman et al. 2000) to
retain existing plan suffixes.

A final remark: our work highlights the need for a more
robust notion of “planning domain.” A PDDL domain is only
a way to use the same set of operators in multiple problems;
it does not capture state constraints. For example, the fact
that all logistics networks are fully connected, and all links
are symmetric is not captured in PDDL. Hoffmann (2005)
had to find these properties by empirical analysis of prob-
lem instances. Such constraints are captured only implicitly
in bespoke programs that generate problems. This substan-
tially complicated the process of assembling disturbance op-
erators, and led us to rule out addressing goal changes. AI
planning needs a more robust notion of domain to address
issues like plan repair, planning and execution, learning, etc.
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