
Planning Using Combinatory Categorial Grammars

Christopher Geib
SIFT

319 1st Ave. North, Suite 400
Minneapolis, MN 55401, USA

cgeib@sift.net

Janith Weerasinghe
Tandon School of Engineering

Department of Computer Science and Engineering
New York University
janith@nyu.edu

Abstract

This paper presents a new model of planning based on rep-
resenting domain knowledge using Combinatorial Categorial
Grammars taken from natural language processing. This en-
ables the capturing of plans with context-free expressiveness.
It uses the same representation that has previously been used
for plan recognition and has been shown to be learnable. Thus
it represents a solid link between planning, plan recognition,
and natural language processing. The paper also compares our
open source implementation to two other well known hierar-
chical planners.

Introduction and Motivation
This paper is motivated by two issues in AI research.
First, the idea that actions in AI planning are functions
from states to states is foundational to AI (Fikes and Nils-
son 1971). Planning based on decomposition is almost
as old (Tate 1977), and has been very successful in de-
ployed systems. However, methods, used to define decom-
positions in hierarchical planning, are not defined as func-
tions from states to states (Ghallab, Nau, and Traverso 2004;
Dvorak et al. 2014; Bercher, Keen, and Biundo 2014;
Shivashankar, Alford, and Aha 2017).

Second, while the close relationship between reasoning
about action and natural language processing (NLP) is well
known (Carberry 1990), the representations used for them
have remained distinct making their integration ad hoc and
require distinct learning algorithms. To address these two
issues, this paper provides a functional formalization of
planning in terms of Combinatory Categorial Grammars
(CCG) (Steedman 2000), a formalism taken from NLP, and
a planning algorithm that contributes:
• Formulation of hierarchical planning using function ap-
plication and composition (rather than decomposition).

• A planner with context-free expressiveness (Aho and Ull-
man 1992) based on an NLP grammar formalism.

• Task level partial order semantics in planning based on
that used in NLP rather than current task level interleaving
common in AI planning.

• A total order implementation that plans directly with the
lifted first order logical representation.

• Runtimes comparable to other hierarchical planners.

However, perhaps more important than the technical contri-
butions of the planner is the linkage that it represents be-
tween planning, plan recognition, and NLP. While the re-
lationship between formal grammars and hierarchical plan-
ning is well known, it has previously only been used to prove
complexity and expressiveness results for planning (Erol,
Hendler, and Nau 1994; Geib 2004; Höller et al. 2014;
Behnke, Höller, and Biundo-Stephan 2015; Höller et al.
2016). In contrast, it is central to the contribution of this
work that the proposed planning domain representation
is a grammar that is exactly the same as that used in
prior work on probabilistic plan recognition (Geib 2009;
Geib and Goldman 2011). While the results of this prior
work won’t be covered here, using the same problem domain
description for both planning and plan recognition (P&PR)
represents a significant step in unifying these research areas.

In addition, CCGs have been used for both NLP pars-
ing (Collins 1997; Clark and Curran 2004) and genera-
tion (White and Rajkumar 2008). Further, work on learn-
ing NLP CCGs has been very successful (Kwiatkowski et
al. 2012). Perhaps, most importantly, (Geib and Kantharaju
2018) has adapted the NLP CCG grammar induction algo-
rithms to show initial results in learning plan CCGs of the
kind used in this paper. Thus, demonstrating that CCGs can
be used for planning is a significant step linking P&PR with
NLP parsing and generation using a learnable representation.
No other representation has yet demonstrated this.

(Geib 2016), has sketched ideas similar to those presented
here. This paper moves beyond that discussion in presenting
a formulation of CCGs more tightly connected to prior work.
Further, it presents an improved planning algorithm and dis-
cusses critical implementation details. Finally, it presents the
first data showing state-of-the-art runtimes, and presents a
more extensive discussion of the relation to other work.

Background Definitions
To bridge terminological differences between research in
NLP and P&PR, these definitions differ slightly from those
presented in CCG work on NLP and even those in previous
plan recognitionwork (Geib 2009; Geib andGoldman 2011).
Definition 1.1 A state, s(~x), is a first order logical formula
using only conjunction and negation over a set of domain
predicates, P , where ~x denotes a possibly empty sequence of
unbound variables used in s.

Proceedings of the 3rd ICAPS Workshop on Hierarchical Planning (HPlan 2020)

18

We denote individual states with individual lower case italic
letters (possibly subscripted) (e.g. a, s1(~x) etc.). When nec-
essary, we will also use lower case italic names for predicates
in the planning domain (e.g. in-hand(~x)) or enumerate the
variables as needed (e.g. in-hand(x1, x2)). We denote the
set of all states over the domain predicates P as SP .

We assume agents have invokable motor programs that
drive their effectors and may change the state of the world.

Definition 1.2 We define a motor program, mp(~x), as a
parameterized function SP → SP that models the results of
an agent executing one of its parameterized control programs
for every state of the domain.
Wewill use a vertical bar to denote applying amotor program
to a state, resulting in another state, (ie. mp(~x)|s0 = s1).

Motor programs differ from well known planning opera-
tors (Fikes and Nilsson 1971), in that motor program execu-
tion is defined for every state of the domain. Operators are
usually defined as a limited set of precondition and effect
rules. In our implementation, motor programs are also im-
plemented as precondition and effect rules. However, each
motor program has an exclusive and exhaustive set of them.
This has the effect of making traditional forward or back-
ward chaining much more computationally expensive. It also
means that motor programs are always applicable and may
encode significantly more information than operators. As
such they may encode knowledge about and be able to make
predictions about the outcome of their execution in states
outside achieving any anticipated goals.

For example a traditional operator for grasping might have
preconditions that would prevent its use if the objects were
very hot. A motor program would encode the outcome of
possibly burning oneself if such an object is grasped. This is
knowledge that might be necessary in an emergency but is
not relevant for most problem solving domains. Requiring an
encoding for every state helps to more fully model our actual
causal knowledge of the domain and prevent the intentional
or unintentional encoding of biases about the uses of an
agent’s lowest level control programs.

Thus,motor programs capture all the causal knowledge the
system has about the domain. We will use a CCG to encode
information about how to build plans to achieve objectives,
but first we need to define planning domains, planning prob-
lems, and solutions.

Definition 1.3 A planning domain, D, is a four-tuple
〈O,P,SP ,M〉 where:
• O is a finite set of objects in the domain,
• P is a finite set of first order domain predicates,
• SP , is a finite set of states defined by P and O, and
• M is a finite set of motor programs defined on SP
Definition 1.4 A planning problem is a triple 〈D, s0, sG〉
where:

• D is planning domain,
• s0 is an initial state in SP defined in D, and
• sG is a goal state in SP defined in D.

We will use σ~x to denote a set of bindings of domain objects
to the variables, ~x, and their application to a state or motor
program (e.g. s(σ~x) or mp(σ~x)) to denote their application
producing a ground instance.

Definition 1.5 Given a domain, D = 〈O,P,SP ,M〉, and
problem, P = 〈D, s0, sG〉, defined on D, a solution or plan
for P is a sequence of motor program instances fromM:
[(mp1(σ ~x1

)), ...mpn(σ ~xn
))] , such that:

mpn(σ ~xn
)) |...| mp1(σ ~x1

))|s0 = sG.

Thus, a plan is just a sequence of ground motor programs
that when executed in the initial state results in the goal state.

Representing Planning Knowledge in CCGs
We are interested in capturing complex, structured knowl-
edge about the possibly multiple effects the motor program
may be used to accomplish and the many and varied roles
that it can play in plans. This is very similar to the kind of
information that needs to be represented about each word
in a CCG. We will follow this NLP research in using the
term category for these knowledge structures as it ties to to
the early formal work on category and combinator theory
from from mathematical logic(Curry 1977) and provides a
foundation for these algorithms. We will denote categories
in capitals and their parameters will be treated, like those in
states or motor programs, in a parenthesized list or vector
(e.g. A, B(~x), H-FULL(x1, x2)). We will define categories
recursively based on two kinds of categories: atomic and
complex.
Definition 1.6 We define an atomic category, A(~x), as a
parameterized function from every state in the domain to a
state unique to the category. A(~x) : SP → {sA(~x)}.
An atomic category defines a constant function achieving a
particular state. Thus executing a motor program described
by such a category always achieves the defined state. For
example, consider the following specification of the category
H-FULL with a single parameter for a simple object-moving
domain that we will use for our examples. The first line
defines its associated state, and the second assigns the motor
program grasp to it indicating that the motor program can
be used to achieve it.

H-FULL(x1) := [in-hand(x1) ∧ !on-table(x1)].
grasp(x1) → [H-FULL(x1)].

Thus, grasp(cup2), would be a function that always results in
states where in-hand(cup2) is true and on-table(cup2) is not.
Where informality is possible, we may use atomic categories
as identifiers for the states they achieve.

Following the use of categories in natural language
CCGs (Steedman 2000), we will define complex categories
using two category construction operators, "/" and "\".
Definition 1.7 Given a set of categories C, where Z ∈ C
and {W,X,Y, ...} 6= ∅ and {W,X,Y, ...} ⊂ C, we define
Z/{W,X,Y, ...} and Z\{W,X,Y...} as complex categories.
The category on the left of the slash is called the category
result and the categories on the right are the arguments.

Proceedings of the 3rd ICAPS Workshop on Hierarchical Planning (HPlan 2020)

19

The slash operators define new categories that combine a
set of argument categories to produce a result category. They
also define the direction in which the category looks for its
arguments, either before or after as determined by the slash.
For example, consider extending our example:

H-FULL(x1) := [in-hand(x1) ∧ !on-table(x1)].
H-ARND(x1) := [hand-around(x1)].
grasp(x1) → [H-FULL(x1) \ { H-ARND(x1) }].

This specifies the motor program grasp is a function that
can be used to achieve the state associated with the atomic
category H-FULL, but to do this, immediately before its
execution, another function must be executed that results
in the state associated with the atomic category H-ARND.
Likewise, the forward slash operator requires its argument
categories occur after it to produce the state associated with
its result category.

Note that the definition of complex categories does not
require the use of atomic categories for arguments or results.
Thus, complex categories can be built recursively. For exam-
ple, consider extending our domain fragment for grasping:

release→ [H-EMTY],
reach4gr(x1) → [H-ARND(x1)],
grasp(x1) →
[((PICK(x1)/{H-AT-S})\{H-EMTY})\{H-ARND(x1)}],
unreach→ [H-AT-S].

Using categories, and following NLP terminology, we next
define a Plan Lexicon.
Definition 1.8 Given a domain, D = 〈O,P,SP ,M〉, we
define a plan lexicon, L, as a triple 〈D, C∗,Λ〉 where,
• C∗ = CA ∪ CC ,
• CA = a finite set of atomic categories for states in SP ,
• CC = a finite set of complex categories built up recursively
starting from CA, and

• Λ is a function that maps each motor program inM to a
set of categories in C∗.

We will also refer to such plan lexicons as plan grammars. A
lexicon augments a planning domain by associatingwith each
motor program a set of categories capturing domain-specific
knowledge about how it can be used to achieve specific states.
To aid our discussion, we define.
Definition 1.9 A category, R, is the root result of a complex
category, Cc, if it is the leftmost, atomic result of Cc.
For example, PICK is the root result of the category:

((PICK(x1)/{H-AT-S})\{H-EMTY})\{H-ARND(x1)}.

Definition 1.10 Amotor program,mpi, is a possible anchor
of a plan for an (atomic) category, Ca, if the lexicon’sΛmaps
mpi to at least one category whose root result is Ca.
In our example, grasp is an anchor for PICK. Further, we
define a lexical planning problem.
Definition 1.11 Given a domain, D = 〈O,P,SP ,M〉, and
a lexicon, L, defined over D we define a lexical planning
problem as a triple 〈L, s0, sG〉
• s0 is an initial state in SP defined in D,

• sG is a goal state in SP defined in D.
Note that our definition of a lexical planning problem al-

lows for encoding domain knowledge in the lexicon using
categories and the Λ function, but solutions are not defined
in terms of this knowledge (see Definition 1.5). This dis-
tinguishes this work from most prior work on hierarchical
planning. We will discuss this in detail later. This said, the
new algorithm described in the next section, does make use
of such lexically encoded knowledge.

Planning Using CCGs
In addition to viewing a category as declarative knowledge of
a motor program’s functional role in achieving a goal, we can
use its structure to guide the generation of a plan to achieve
its root result. Thus, CCG-based planning can be viewed as a
recursive structure-following algorithm similar to those used
in NLP sentence generation (White and Rajkumar 2008).
Given an atomic category that is a function to a state

we wish to achieve, choose a motor program that is one of
the category’s anchors and add it to the plan, binding any pa-
rameters associated with the category. Then recursively build
plans to achieve its argument categories, in order, appending
the resulting sub-plans either to the left or right of the exist-
ing plan as determined by the category’s slashes. Note, this
builds plans from the anchor motor program outward.
Figure 1 gives pseudocode for this process in a procedure

called LEXgen that takes a lexical planning problem as input
and returns a plan. To make the category-directed search as
clear as possible, we use nondeterministic CHOOSE oper-
ators to avoid explicit code for backtracking over category
and action choice and parameter bindings. X is a variable
over category structures and α is a possibly empty set of
categories.
Note that each iteration of the while loop builds a plan

for one of the arguments to the category. When all of the
arguments in a given set have been processed (see lines 10 and
14) the associated slash is removed allowing the algorithm to
access the next set of argument categories (or the root result).
Note the resulting plan is tested to verify its success (line 16)
before being returned; if not, the algorithm backtracks. Next
we will discuss a short example including plan verification.
Figure 2 shows a traditional hierarchical plan structure for

much of the same structure captured in CCG 1 . Consider
using the lexicon fragment CCG 1 to build a plan to achieve
in-hand(cup2). First the algorithm must find an atomic cat-
egory that includes the desired state. PICK satisfies this re-
quirement. PICK’s result state and the goal state are unified
to find bindings for the category’s parameters resulting in
PICK(cup2). Figure 3 shows how this instantiated category
directs the rest of the plan search. Given a category, the sys-
tem selects one of its anchors and uses it to bind the motor
program’s parameters. Line 2 of Figure 3 shows the selection
of motor program grasp as the anchor for PICK. Parame-
ter binding produces grasp(cup2) and a ground instance of
grasp’s category to direct the rest of the plan search:

((PICK(cup2)/{H-AT-S})\{H-EMTY})\{H-ARND(cup2)}
The system adds the bound motor program to the plan, and
then looks at the next argument of the current category, in this

Proceedings of the 3rd ICAPS Workshop on Hierarchical Planning (HPlan 2020)

20

1 Procedure LEXgen(L, s0, G) {
2 CG ← { c ∈ C∗ such that G = root(c)};
3 CHOOSE ci(~x) ∈ CG such that ci(~x) ∈ Λ(mpj(~x));
4 CHOOSE σ~x;
5 Plan← [mpj(σ~x)]; C ← ci;
6 WHILE (C(σ~x) 6= G) {
7 IF (C = X\Y) {
8 CHOOSE ck such that Y = α ∪ {ck}
9 Plan← APPEND(BuildPlan(ck,L), P lan);
10 IF (α = ∅){C ← X; } ELSE {C ← X\α; }}
11 ELSE-IF (C = X/Y) {
12 CHOOSE ck such that Y = α ∪ {ck}
13 Plan← APPEND(Plan,BuildPlan(ck,L));
14 IF (α = ∅){C ← X; } ELSE {C ← X/α; }}
15 }
16 IF (Plan|s0 = G){ RETURN Plan; }}

Figure 1: Nondeterministic plan generation pseudocode.

case H-ARND(cup2) (see line 3 of Figure 3) and repeats the
process. In line 4, the system has selected an motor program
that is an anchor for H-ARND and bound it, resulting in:

P = [reach4gr(cup2)]
Since H-ARND only requires this single motor program,
planning for it is complete. In line 5, because H-ARND was
a leftward argument of the category directing the search, the
motor program is added to the front of the plan, resulting in:

P = [reach4gr(cup2), grasp(cup2)]
In lines 6 to 8, the same process is repeated on the H-EMTY
category, giving the plan fragment:

P = [release, reach4gr(cup2), grasp(cup2)]
Lines 9 to 11 in the figure repeat the same process forH-AT-S,
with the difference that a rightward-looking argument to the
category directs the search. As a result, on line 11 the un-
reachmotor program is added to the end of the current plan:

P = [release, reach4gr(cup2), grasp(cup2), unreach]

Since grasp’s category has no more arguments, the plan is

CCG: 1
PICK(x1) := [in-hand(x1)],
H-FULL(x1) := [in-hand(x1) ∧ !on-table(x1)],
H-EMTY := [!in-hand(x1)],
...
release→
[H-EMTY, (PLACE(x1)/{H-AT-S})\{H-ABV(x1)}],
reach4gr(x1) → [H-ARND(x1)],
reach4pl(x1) → [H-ABV(x1)],
unreach→ [H-AT-S],
grasp(x1) →
[((PICK(x1)/{H-AT-S})\{H-EMTY})\{H-ARND(x1)}],
orient(x1) → [FACE(x1)],
move(x1, x2) →
[(((MOVE-OBJ(x1, x2)/{PLACE(x2)})/{FACE(x1)})...
\{PICK(x2)})\{FACE(x1)}].

release reach4gr grasp unreach

PICK

H-EMPTY H-AROUND H-FULL H-AT-S FACE LOCOMOTE FACE H-ABOVE H-EMPTY H-AT-S

unreach

PLACE RELOCATE

reach4pl release orient orient move

MOVE-OBJ

Figure 2: The hierarchical plan to move an object given in
CCG 1. Shaded nodes indicate the steps covered by themove
motor program’s complex category.

done. Again note, each argument’s sub-plan is added either to
the beginning or end of the plan as dictated by the category,
building the plan recursively from the middle outward.

Verifying the PlanCategories here are intended to encode
functional knowledge that is likely, not guaranteed, to hold in
all world states. Motor programs are defined in all states of
the world, and are executable even where they do not achieve
the states specified in their categories.

Consider the first example CCG that mapped grasp to
H-FULL. While this is a likely outcome of grasping, the
grasp motor program may predict that H-FULL will not re-
sult for objects that are slippery. As we have said, the causal
knowledge encoded in the motor programs can be more com-
plete than the knowledge of how to go about building plans to
achieve goals encoded in the categories. As such, LEXgen’s
algorithm is not guaranteed to produce a successful plan by
construction and the plan must be verified using the motor
programs. If this test fails, the algorithm backtracks across
chosen categories andmotor programs. Thus, it uses themp’s
verify if the constructed plans achieve the goal.

Somemight argue against building possible plans and test-
ing them for validity afterwards. However, these objections
rest on an empirical question; is this approach actually less
efficient than building plans that are valid by construction?
The answer to this question is dependent on the speed of the
algorithm and the CCG-encoded domain knowledge.

Formal Properties of LEXgen

Theorem 1.1 (Soundness) Let PP= 〈L, s0, sG〉 be a plan-
ning problem. If a trace of LEXgenreturns a solution π, then
π is a solution to PP.
Proof Sketch: The planner algorithm works by generating
a sequence of motor program instances using a category
with the goal as its root result that is within the yield of the
grammar. It tests if it is a solution before returning it. (See
the last line of the pseudo code.) As such, any plan returned
by the algorithm must be a solution to the problem. �

Although the algorithm is sound, it is not is not complete.
Since solutions are not restricted by the information encoded
in Λ, the system’s completeness is contingent on the com-
pleteness of the lexicon relative to the planning problem.
That is, if the lexicon encodes all of the possible solutions to
the problem within its yield then the algorithm is complete.

Proceedings of the 3rd ICAPS Workshop on Hierarchical Planning (HPlan 2020)

21

1 PICK(cup2). .
2 ((PICK(cup2)/{H-AT-S})\{H-EMTY})\{H-ARND(cup2)} : grasp(cup2)

−1<

3 H-ARND(cup2) (PICK(cup2)/{H-AT-S})\{H-EMTY} : grasp(cup2).
4 reach4gr(cup2). append-L
5 (PICK(cup2)/{H-AT-S})\{H-EMTY} : reach4gr(cup2), grasp(cup2)

−1<

6 H-EMTY PICK(cup2)/{H-AT-S} : reach4gr(cup2), grasp(cup2).
7 release. append-L
8 PICK(cup2)/{H-AT-S} : release, reach4gr(cup2), grasp(cup2)

−1>
9 PICK(cup2) : release, reach4gr(cup2), grasp(cup2) H-AT-S.
10 unreach. append-R
11 PICK(cup2) : release, reach4gr(cup2), grasp(cup2), unreach

Figure 3: Building a plan to achieve the goal category PICK(cup2). Solid lines denote deconstructing a complex category (-1
and a direction indicator). Dotted lines separate two subtasks of the planning process: choosing a motor program to achieve a
particular category (no annotation) and adding the chosen motor program to the plan (“append-L” or “append-R”) .

However, we can imagine lexicons that simply don’t have a
plan within their yield to address a goal. In such cases, the
algorithm would fail to produce a plan even if a plan could
be assembled from the available motor programs. Thus we
can claim only a qualified completeness for the algorithm.

Definition 1.12 Given a lexical planning problem PP =
〈L, s0, sG, 〉, L is defined to be complete with respect to
PP if it holds that: if π is a solution to PP, then π is in the
yield of the CCG defined by L.
Theorem 1.2 (Contingent Completeness) Let PP =
〈L, s0, sG〉 be a planning problem where L is complete with
respect to PP. If π is a solution for PP, then there is a nonde-
terministic trace of LEXgenthat returns π.

Proof Sketch: The yield of any CCG is determined by the
categories chosen (and hence the motor programs chosen)
and the binding of its arguments to produce instances. Since
LEXgennondeterministically searches over all such possible
choice points, there is at least one trace of LEXgenthat results
in each element of Λ’s yield, and since Λ is complete with
respect to PP, π must be the result one such trace. �

A short discussion of the expressiveness of a CCG plan
lexicon is alsoworthwhile. The expressiveness ofCCGgram-
mars is well studied in NLP and is known to depend on the set
of combinators (Curry 1977) used to combine categories for
recognition. Following prior work on plan recognition using
CCGs (Geib 2009) our system uses only three combinators:

right application: X/α ∪ {Y }, Y ⇒ X/α,
left application: Y, X\α ∪ {Y } ⇒ X\α, and
right composition: X/α ∪ {Y }, Y/β ⇒ X/α ∪ β.

X and Y are categories, and α and β are possibly empty
sets of categories. Intuitively they capture the named func-
tional operations respecting the directionality of the cate-
gory’s slash operator. Limiting CCGs to these three opera-
tors results in context-free languages (Kuhlmann, Koller, and
Satta 2015) making LEXgen’s representation less expressive
than some other planners like SHOP2 (Nau et al. 2003).

Implementation Details
A short discussion of some details of our first-order, C++
implementation of these ideas is also valuable. First, the
CCG-directed search is implemented using iterative deepen-
ing allowing it to build recursive plans. Given a recursive
category (e.g. A\{A}) the algorithm searches for plans of
increasing length preventing infinite regress or finding sub-
optimal plans. This represents an improvement over planners
that require a fixed bound on search depth or preclude recur-
sive hierarchical plans (Dvorak et al. 2014).

Second, we found it helpful to require LEXgen models be
formulated so as to not require a single object be bound to
two different parameters in a predicate, category, or motor
program. This allows LEXgen’s algorithm to remain com-
plete while reducing the binding search space by eliminat-
ing from consideration bindings of motor programs such as
drive(truck1, loc1, loc1), that would drive truck1 from a lo-
cation to the same location. In cases where this is required,
the model and lexicon can be extended with a specialized
instance (e.g. drive-cycle(truck1, loc1)). Thus, this does not
effect the system’s expressiveness or completeness and re-
duced runtimes by a factor of ten. We have found no domains
in which this caused an increase in the runtime of the system,
however a complete theoretical investigation of this is an area
for future work.

Third, the mapping that defines each mp is deterministic.
One could imagine nondeterministic models that predict a
distribution over resulting states. However, this is an area
for future work. Finally, our implementation has an implicit
observemotor program for all atomic categories that are true
in the world, this prevents the building of plans to achieve
already existing states. Thus given a category likeA\{B}, if
B is already true in the current world state, the planner does
not attempt to build a plan for it.

Finally, like other hierarchical planners, for goal states
that are a conjunction of multiple predicates, we found
it helpful to construct specialized complex categories to
achieve conjunctive goals. For example, consider a typical
goal state in the blocks world (Gupta and Nau 1992) that

Proceedings of the 3rd ICAPS Workshop on Hierarchical Planning (HPlan 2020)

22

looks like on(block1, block2), on(block3, block4) and as-
suming that the category STACKED-ON(x1, x2) has the
state on(x1, x2), we could add to the planner the complex cat-
egory:G\{STACKED-ON(b1, b2),STACKED-ON(b3, b4)}
to simplify the search for a plan.

Relation to Previous Work
We will focus this discussion on specific technical issues.

Methods vs. Categories:Almost all prior work on hierar-
chical planning, usesmethods to define how tasks are decom-
posed into a series of less abstract subtasks and eventually
ground in executable operators. Given a set of task names,
T , a method is often defined as a four-tuple 〈th, P re, Tn,≺〉
where th ∈ T is the name of the task this method expands,
Pre is a precondition defining when the method is applica-
ble, Tn ∈ T is a set of tasks that will replace th in the plan,
and ≺ is a set of ordering constraints on the tasks in Tn for
the resulting plan to be a valid. The work on Hierarchical
Goal Networks (HGNs) (Shivashankar et al. 2012), also use
methods to describe plan knowledge, however the names in T
refer to goal states. CCGs as formalized here are most similar
to such HGNs since atomic categories represent functions to
states. This said, setting aside method preconditions that will
be discussed later, we can think of HTN/HGN methods as
encoding a set of context-free grammar (CFG) production
rules where the th is the left side of the rules and each of the
possible orderings of Tn is the right side of a rule.

Given this, and CCG’s context free expressiveness, it
should not be a surprise that each assignment of a motor
program to a CCG category can be rewritten as an equiva-
lent, precondition free HTN/HGN method. The method will
have exactly one executable motor program in their right
hand side. The root result of the original category defines
the thing to be expanded and the argument categories the
expansion arrayed around the assigned motor program. For
example,

move(x1, x2) →
[(((MOVE-OBJ(x1, x2)/{PLACE(x2)})/{FACE(x1)})...
\{PICK(x2)})\{FACE(x1)}].

(with some abuse of notation) could be seen as the precon-
dition free HTN/HGN method, M1,

M1 =
〈th = MOVE-OBJ(x1, x2), P re = [], Tn = {PICK(x2),
FACE(x1),move(x1, x2), FACE(x1), PLACE(x2)},
≺ = {(1, 2), (2, 3), (3, 4), (4, 5)}〉.

We note, while this instance is totally ordered, CCGs can
represent task level partial order plans.
Since every HTN/HGN method produced by convert-

ing CCG categories will contain an executable motor pro-
gram, CCGs can be seen as an alternative syntax for a
generalized version of Greibach Normal Form Grammar
(GNFG) (Greibach 1965). In GNFs a single terminal begins
the right hand side of every production rule. CCGs are more
general in that the terminal can occur anywhere in the rules
right hand side. Similar to a GNFG, each motor program
category pair can be thought of as storing the results of pre-
compiling search in the decomposition space. Each such pair
defines a tree spine from a root to a leaf node. This highlights

another difference between CCGs and HTN/HGN methods.
A CCG category’s can be thought of a slicing the plan tree
vertically while HTN/HGNmethods slice horizontally. Thus
a category’s argument categories will most often be at mul-
tiple levels of abstraction. This contrasts with HTN/HGN
methods that usually capture only one level of plan decom-
position and do not require terminals in their expansion.
Further, while a motor program, category pair can be

uniquely converted to a HTN/HGN method and thus a CCG
plan lexicon could be converted for use by an HTN/HGN
planner, a given set of HTN/HGN methods is not uniquely
convertible to a CCG plan lexicon. The compiled plan-space
search captured in the motor program, category pairs can
be done in multiple ways while still producing a complete
grammar with the same yield. For example, release could be
the anchor for MOVE rather than move. This would result
in a very different category (with only rightward argument
categories), that is equivalent to a very different HTN/HGN
method. Further it would require a very different rest of the
lexicon in order to keep the yield the same. (Geib 2009) has
shown that the choice ofwhichmotor programs anchorwhich
categories can have a profound effect on the efficiency of plan
recognition. We believe a similar effect holds in planning re-
sulting in the earlier pruning of plans that cannot be ground
and enabling the early termination of search by producing a
complete plan prefix. This is an area for future work.
Preconditions: Many, if not most, other decompositional

planners support preconditions restricting a method’s ap-
plication. Such preconditions present theoretical difficulties
since they may play at least three different roles: 1) defining
causal enablement conditions on the method, 2) preventing
a method’s use when it is unlikely to result in a successful or
desirable plan, and 3) variable binding and search control.
In fact, true causal preconditions (case 1) are very rare. Far

more often preconditions are used to control search prevent-
ing the application of a method where the domain designer
knows it will lead to excessive search or to bind method pa-
rameters to reduce search. While LEXgen does not support
search control preconditions, true causal preconditions for a
CCG are easily encoded in a category by adding leftward
looking argument categories.

Total vs. Partial Order: LEXgen is a total order planner
similar to (Shivashankar et al. 2012). That said, LEXgen’s
CCGs do capture task level partial ordering. That is, two
argument categories can be specified as partially ordered but
their plans cannot be interleaved. First one must be done and
then the other. This keeps it in line with CCG use in NLP.
Note it does NOT require the unfolding of all orderings of
the argument categories in the CCG.
Task Insertion: Unlike several of the latest decompo-

sitional planners (Höller et al. 2014; Alford et al. 2016),
LEXgendoes not support task insertion which allows these
planners to add actions outside of a known decomposition
method. Enabling this in LEXgenis an area for future work.
Heuristic Search: (Shivashankar et al. 2012; Shiv-

ashankar, Alford, andAha 2017) provide heuristics for choice
points in their decompositional planners. We believe these or
similar heuristics can be used to improve LEXgen’s search,
and will discuss this further in the context of our experimen-

Proceedings of the 3rd ICAPS Workshop on Hierarchical Planning (HPlan 2020)

23

tal results. However, this is still an area for future work.
Status of Domain Knowledge vs. Solutions: It should

be clear by now that CCGs in this formulation represent
general knowledge about how plans are to be built rather than
inviolate knowledge about the causal domain relations. In
this, it is more similar to planners that allow for task insertion
that see methods as advice for plan construction. This is in
sharp contrast to most prior work that defines the correctness
of plans in terms of the methods. However, in a deep sense,
to define plan correctness this way doesn’t actually solve the
problem, instead it pushes it into the grammar to which it
is more explicitly linked in our formulation. Given a set of
motor programs, it is possible that the yield of a grammar
does not include plans for all reachable states in the domain.
Thus it must be that either we claim that 1) some states are
not acceptable goals, 2) the grammar is incomplete or 3)
force the grammar to have a yield that reaches every possible
state and thereby minimize the aid it might provide.

We feel our formulation makes this issue clearer and is
more accurate. We recognize there may be plans an agent has
the motor programs to achieve, but hasn’t leaned the CCG for
its construction. To claim such a planner is complete before
this learning is done seems, to us, counter intuitive. Further,
this approach preserves the NLP distinction between syntax
(CCG categories) and semantics (motor programs) that is
critical to the alignment of these area. If a plan is defined as
being correct solely because it is in the yield of the grammar it
would be equivalent to saying that only syntactically correct
sentences could have any meaning which daily experience
refutes.

Experiments
We have compared this approach to planning to two other
state of the art planners. Note that given the use of CCGs in
plan recognition and NLP research, our objective in doing
this is not to show that our system always performs better
but that it has comparable performance to state of the art
planners and therefore is attractive as an integrative frame-
work. We have compared our implementation of LEXgen

with the hierarchical SHOP2 planner (Nau et al. 2003) and
the ICARUS system (Langley and Choi 2006).We have com-
pared the three systems using twenty two different problems
that fall across four domains: blocks world (Gupta and Nau
1992), the satellites domain from the international planning
competition (IPC), the logistics domain (Veloso 1992), and
a robot-based kitchen domain.

We have chosen not to compared our system to non-
hierarchical planners like FF (Hoffmann and Nebel 2001)
for several reasons. First, it is generally agreed in the com-
munity, that with sufficient domain knowledge hierarchical
planners will outperform non-hierarchical planners on large
problems. This has a tendency to reduce such comparisons
to knowledge and domain engineering competitions. Sec-
ond, given the universal applicability of motor programs as
opposed to operators, FF-style planners might be at a signif-
icant disadvantage given the breadth of their search space.
Allowing the FF encoding of the domain to reduce themotor-
programs back to being operators again opens the question of

domain engineering and a level playing field. Third, most FF-
style planners uses a propositional representation. In order
to be consistent with prior work in NLP, LEXgen works on a
first order representation opening questions about counting
the cost of grounding. Fourth and finally, while CCGs are
well established in the NLP community, we know of no work
that suggests the use of non-hierarchical representations for
either parsing or generation of language. Thus, even excep-
tional performance against non-hierarchical planners, while
possibly of theoretical interest, would in no way strengthen
our argument that this representation represents an important
link between work on P&PR and NLP.

Note both SHOP2 and ICARUS use of preconditions to di-
rect method search make them more powerful than LEXgen.
Further SHOP2 supports the use of "assert" and "retract"
operators on its model of the state. This can enable SHOP2
to entirely reformulate a problem before solving even adding
new predicates to the domain. In fact, this capability is used
to great effect in prior work to produce runtimes that show
almost no increase as problems significantly increase in size.
However, it raises the question of what limits are placed on
this capability. To compare like with like, none of the SHOP2
domains we tested used assert and retract.

We have encoded domains for all three systems with the
same level of causal domain knowledge (converting causal
preconditions to argument categories in the CCG). We have
not used the assert and retract actions in SHOP2, but we
have included the results of SHOP2 and ICARUS domains
making use of non-causal precondition-directed method de-
composition search even though LEXgen does not support
such preconditions. For all three systems, the motor pro-
grams ("operators" in SHOP2 and "basic skills" in ICARUS)
are identical, including the parameter lists, and the same
logical propositions describe world states. The same plan
structures were encoded in the SHOP2 methods, ICARUS
complex skills, and LEXgen complex categories, however
as we have discussed the assignment of motor programs to
LEXgen categories effectively stores precompiled search in a
way not easily replicated in the other systems.We believe this
encoding aided LEXgen’s performance. A complete study of
this is an area for future work.

In Figure 4, "SHOP2–" refers to the execution time of the
planner without "assert" and "retract" actions and method
preconditions and SHOP2 refers to domains with method
preconditions. The execution times reported under ICARUS
are for domains with the basic ICARUS skills, the runtimes
under ICARUS′ contains the same complex skills without
preconditions, and runtimes reported under ICARUS′′ are
for domains with complex skills with preconditions.

The satellites domain involve plans for taking one, two
and three images. We conducted two types of blocks world
tests. The single goal tests involve domains having one to
six blocks in the domain with a goal of having a specified
block on top of another (the problems were designed such
that the target blocks were at the bottom of two stacks). The
multiple goal tests included three to five blocks with three
to five conjunctive goals. The logistics domain problems
included transporting one to three packages within the same
city and across two different cities. The four problems in the

Proceedings of the 3rd ICAPS Workshop on Hierarchical Planning (HPlan 2020)

24

Domain LEXgen SHOP2– SHOP2 ICARUS ICARUS′ ICARUS′′
Satellites 1 image 0.0342 0.0365 0.0355 4.6037 10.6581 4.0650
Satellites 2 images 0.2408 0.0734 0.0362 6.0789 16.1588 6.3339
Satellites 3 images 53.7502 10.266 0.051 7.6421 25.6157 8.4330
Blocks 3 single goal 0.0003 0.0959 0.0353 6.3337 13.6586 2.8048
Blocks 4 single goal 0.0011 1.4492 0.0352 9.7077 12.1976 3.4093
Blocks 5 single goal 0.0390 — 0.0355 19.0961 36.4703 4.3555
Blocks 6 single goal 0.0717 — 0.0363 26.8817 89.5109 5.3468
Blocks 7 single goal 133.614 — 0.0364 25.7804 89.5109 6.4030
Blocks 3 multi goal 0.0098 — 0.0362 4.0956 49.4053 4.8493
Blocks 4 multi goal 0.0016 — 0.0371 21.5772 11.2691 10.1875
Blocks 5 multi goal 0.0110 — 0.039 37.0607 — 24.3125
Blocks 6 multi goal 0.0645 — 0.0382 26.9061 18.6062 5.3530
Blocks 7 multi goal 143.685 — 0.0385 25.7329 89.4028 6.4028
Logist 1 pack, 1 city 0.0003 0.0345 0.0344 2.2329 2.3463 2.5730
Logist 2 pack, 1 city 0.0017 0.0353 0.0348 4.2632 8.0660 4.2977
Logist 3 pack, 1 city 0.0008 0.0353 0.0353 11.0704 9.6281 9.910
Logist 1 pack, multi city 12.5573 0.0793 0.0371 11.9139 49.2183 48.9495
Logist 2 pack, multi city 568.6783 — 113.037 — 143.136 66.1528
Robot Table Setting 1 0.0019 0.0359 0.036 0.1504 0.1944 0.1748
Robot Table Setting 2 0.1265 0.0386 0.039 0.3932 0.3048 0.326
Robot Table Setting 3 6.4188 0.1701 0.0538 0.232 0.3576 0.3408
Robot Kitchen mixing 0.4657 0.0401 0.0359 — 6.3292 0.5552

Figure 4: Runtimes in seconds for twenty-two problems across four domains for LEXgen, SHOP2, and ICARUS.

robotic kitchen domain involve setting the table and mixing
ingredients to make a cake. All times are real/wall clock
times in seconds. Dashes (—) are runtimes over ten minutes.

Our hypothesis was that LEXgen would perform at about
the level of SHOP2 and ICARUS without search con-
trol method preconditions, however, it easily surpassed this
benchmark. Our results show that given the same domain
knowledge, LEXgen has the best performance for ten of the
twenty two problems and is beaten only by SHOP2 using
search directing preconditions in an additional five domains.

As we have already stated, LEXgen does not support pre-
conditions to control search. However, when there are multi-
ple categories with a desired root result, ordering the search
among these categories using a heuristic is an obvious area
for futurework thatwe have discussed in the previous section.
Conditioning this order on the search will provide a similar
capability to that shown in SHOP2 and ICARUS. We antic-
ipate conditioning this search on the state of the world and
previous successful uses of the category in building plans.
That said, these results clearly show LEXgen has compara-
ble performance to these state of the art planners. That said,
with search control knowledge provided by method precon-
ditions, SHOP2’s runtime is less affected than LEXgen as
problem size increases. While this gives us a good reason
to consider encoding heuristic category-selection search, it
does not suggest an issue with scaling to larger domains.

Further exploration ofwhere SHOP2 and ICARUSout per-
formed LEXgen has revealed cases attributable specifically
to specialized reasoning about the binding of objects to ac-
tion parameters. For example, we might want to prevent that
application of method or skill that resulted in the exploration
of plans for the moving of certain specific blocks or blocks

that are not of a particular shape. Capturing such restrictions
in preconditions on methods is very common in hierarchical
planning systems. However, to us this seems more amenable
to simple typing of the action and category parameters rather
than full preconditions. As a result, we are working on ex-
tending LEXgen with typed parameters for predicates, motor
programs, and categories.

Finally, we note that ICARUS′ (ICARUS with complex
skills but without preconditions) sometimes performs worse
than ICARUS with just basic skills. We believe this is be-
cause ICARUS was designed to have complex skills with
preconditions, and without the preconditions, the complex
skill definitions add extra overhead to the search process.

Conclusions
This paper has presented a reformulation of planning and a
planning algorithm, LEXgen, in terms of CCGs, a state of
the art learnable grammar formalism taken from NLP (Geib
and Kantharaju 2018). This representation is also exactly the
same as that used to perform plan recognition in (Geib 2009;
Geib and Goldman 2011). It uses these CCG categories to
direct the search for plans, organizing all planning knowledge
around executable actions making it a very attractive frame-
work for unifying reasoning about action and language.

References
Aho,A.V., andUllman, J.D. 1992. Foundations ofComputer
Science. New York, NY: W.H. Freeman Press.
Alford, R.; Shivashankar, V.; Roberts, M.; Frank, J.; and
Aha, D. W. 2016. Hierarchical planning: Relating task and
goal decomposition with task sharing. In IJCAI, 3022–3029.
IJCAI/AAAI Press.

Proceedings of the 3rd ICAPS Workshop on Hierarchical Planning (HPlan 2020)

25

Behnke, G.; Höller, D.; and Biundo-Stephan, S. 2015. On the
complexity of HTN plan verification and its implications for
plan recognition. In Proceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS),
25–33.
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid planning
heuristics based on task decomposition graphs. In Proceed-
ings of the Seventh Annual Symposium on Combinatorial
Search, SOCS. AAAI Press.
Carberry, S. 1990. Plan Recognition in Natural Language
Dialogue. ACL-MIT Press Series in Natural Language Pro-
cessing. MIT Press.
Clark, S., and Curran, J. 2004. Parsing the wsj using ccg
and log-linear models. In ACL ’04: Proceedings of the 42th
Annual Meeting of the Association for Computational Lin-
guistics, 104–111.
Collins, M. 1997. Three generative, lexicalised models for
statistical parsing. In ACL ’97: Proceedings of the 35th
Annual Meeting of the Association for Computational Lin-
guistics.
Curry, H. 1977. Foundations of Mathematical Logic. Dover
Publications Inc.
Dvorak, F.; Barták, R.; Bit-Monnot, A.; Ingrand, F.; and
Ghallab, M. 2014. Planning and acting with temporal and
hierarchical decomposition models. In 26th IEEE Interna-
tional Conference on Tools with Artificial Intelligence, IC-
TAI, 115–121. IEEE Computer Society.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. In Proceedings of AAAI-1994,
1123–1128.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 2:189–208.
Geib, C., and Goldman, R. 2011. Recognizing plans with
loops represented in a lexicalized grammar. In Proceedings
of the 25th AAAI Conference on Artificial Intelligence (AAAI-
11), 958–963.
Geib, C.W., and Kantharaju, P. 2018. Learning combinatory
categorial grammars for plan recognition. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelli-
gence, 3007–3014. AAAI Press.
Geib, C. 2004. Assessing the complexity of plan recognition.
In Proceedings of AAAI-2004, 507–512.
Geib, C. W. 2009. Delaying commitment in probabilistic
plan recognition using combinatory categorial grammars. In
Proceedings of the International Joint Conference on Artifi-
cial Intelligence (IJCAI), 1702–1707.
Geib, C. W. 2016. Lexicalized reasoning about actions.
Advances in Cognitive Systems Volume 4:187–206.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Greibach, S. A. 1965. A new normal-form theorem for
context-free phrase structure grammars. J. ACM 12(1):42–
52.

Gupta, N., andNau, D. S. 1992. On the complexity of blocks-
world planning. Artificial Intelligence 56(2):223–254.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:2001.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language classification of hierarchical planning problems.
In ECAI 2014 - 21st European Conference on Artificial In-
telligence, volume 263 of Frontiers in Artificial Intelligence
and Applications, 447–452. IOS Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2016.
Assessing the expressivity of planning formalisms through
the comparison to formal languages. In Proceedings of the
Twenty-Sixth International Conference on Automated Plan-
ning and Scheduling, ICAPS, 158–165. AAAI Press.
IPC. http://ipc.icaps-conference.org.
Kuhlmann,M.; Koller, A.; and Satta, G. 2015. Lexicalization
and generative power in CCG. Computational Linguistics
41(2):215–247.
Kwiatkowski, T.; Goldwater, S.; Zettlemoyer, L. S.; and
Steedman, M. 2012. A probabilistic model of syntactic
and semantic acquisition from child-directed utterances and
their meanings. In EACL, 234–244.
Langley, P., and Choi, D. 2006. Learning recursive con-
trol programs from problem solving. Journal of Machine
Learning Research 7(Mar):493–518.
Nau, D.; Ilghami, O.; Kuter, U.; Murdock, J. W.; Wu, D.;
and Yaman, F. 2003. SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research 20:379–404.
Shivashankar, V.; Alford, R.; and Aha, D. W. 2017. In-
corporating domain-independent planning heuristics in hier-
archical planning. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9, 2017,
San Francisco, California, USA., 3658–3664. AAAI Press.
Shivashankar, V.; Kuter, U.; Nau, D. S.; and Alford, R.
2012. A hierarchical goal-based formalism and algorithm for
single-agent planning. In International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS 2012, Va-
lencia, Spain, June 4-8, 2012 (3 Volumes), 981–988. IFAA-
MAS.
Steedman, M. 2000. The Syntactic Process. MIT Press.
Tate, A. 1977. Generating project networks. In Proceedings
of the Fifth International Joint Conference on Artificial Intel-
ligence, 888–893. Cambridge,MA,USA:MorganKaufmann
Publishers Inc.
Veloso, M. M. 1992. Learning by analogical reasoning in
general problem solving. Technical report, DTIC Document.
White, M., and Rajkumar, R. 2008. A more precise anal-
ysis of punctuation for broad-coverage surface realization
with ccg. In Proceedings of the Workshop on Grammar
Engineering Across Frameworks, 17–24. Association for
Computational Linguistics.

Proceedings of the 3rd ICAPS Workshop on Hierarchical Planning (HPlan 2020)

26

