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Abstract

A legal opinion in the German legal system is a formal piece
of writing that investigates whether a given statement of law
is true or not given a description of a specific case. Writing
these opinions is the central element of German legal educa-
tion, but is supported only by basic IT technologies, such as
text-based search engines. Formalising legal thoughts would
enable the creation of various tools that support students,
lawyers, and judges in correctly applying the law.
German legal opinions are interesting are interesting from a
research perspective as they follow a strictly formalised struc-
ture and method of argumentation. In practice, these opin-
ions can (often) be seen as a thorough application of so-called
schemata. A schemata provides a fixed way to check whether
a specific assertion of law holds or not by providing sub-
assertions to check and a rule on how these results should be
combined. In essence, these schemata therefore describe a hi-
erarchical (but potentially recursive) structure on legal terms
and properties.
We propose a formalisation of these schemata in terms of Hi-
erarchical Task Network (HTN) planning. The modelled do-
main will describe the application of the law on the specifics
of a given case s.t. the resulting plan and its decompositional
structure will constitute the structure of a legal opinion on the
case.

1 Introduction
Almost any action has some connection to the legal system
we are living in. Either by means of civil law (governing the
relationship between peoples and between people and ob-
jects), public, or criminal law (dealing with the connection
between the state and its citizens). Despite its pervasiveness,
the legal argumentation is still a relatively manual task. Es-
pecially when learning to apply the law, there is almost no
automated support – apart from e.g. search engines.

Applying the law is a multi-step process. First, the facts
relevant to the case in question must be gathered. Second,
these facts are associated with legal concepts – a process
called subsumption. For example one may have to decide
whether the letter written by a vendor is a “firm summons
to pay” (which is required for a notice of default). Third,
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we have to reason about legal consequence, e.g. who has an
obligation to pay. The first two steps deal with the fuzzy and
uncertain aspects and are thus more suited for sub-symbolic
techniques like machine learning.

The third step may however be viewed as “purely log-
ical”. At least for the anglo-american common law sys-
tem, this is not the case, as legal reasoning here hugely
depends on matching prior cases against the facts of the
case at hand – which again is a fuzzy process. Thus re-
search for common law systems often deals with reason-
ing on the basis of precedents (Atkinson and Bench-Capon
2019). In civil law systems, the application of the law de-
pends only on the written law. The constant jurisprudence
of the highest courts may still play a role in the inter-
pretation of the written law, but is not as dominant as is
the common law. As such, there is a body of work deal-
ing with the formalisation of legal reasoning, e.g. as De-
ontic Logic (Jones and Sergot 1992), as Answer Set Pro-
gramming (Aravanis, Demiris, and Peppas 2018), as PRO-
LOG rules (Satoh et al. 2011), as ontologies (Palmirani
and Governatori 2018), or as argumentation (Marshall 1989;
Prakken and Sartor 2015).

How reasoning about the consequences of given facts un-
der the law is performed depends on the legal system. Ger-
many’s legal system uses opinions to derive consequences,
which follow a highly formalistic and logic-driven style of
argumentation (Kischel 2019, p. 417ff). Notably, there exist
pre-determined ways and means for determining whether a
statement X follows from the specifics of a given case, so-
called schemata. For this, the schema sets out a sequence of
other statements that have to be checked and a rule on how
to combine them.

In this paper, we present a formalisation of these schemata
in terms of planning. With this formalisation we are (1)
able to derive the truth of a statement given an appropri-
ately modelled fact (at least to some degree) automatically
and (2) lay the foundation for future automated assistance of
legal scholars, layers, and students. Notably, the plan gen-
erated for a given fact will correspond to the structure of
the opinion for checking it. We could, for example, use our
formalisation as the basis for teaching student specific con-
cepts of law – by developing opinions in cooperation with
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them. Note that we do not aim at fully writing an opinion,
we rather aim at representing the structure and argumenta-
tion contained in the opinion. Any verbalisation would be
out of scope of a conference paper and we consider it future
work.

We start by giving a brief introduction into Legal Opin-
ions and their structure and will then introduce our running
example that we will consider throughout the paper. We then
introduce the concept of HTN planning. Thereafter we dis-
cuss how the structure of opinions and their schemata can be
represented in terms of HTN planning problems.

2 Legal Opinions and German Civil Law
Legal reasoning is – at least in Germany – most often con-
tained in written so-called opinions. An opinion is a struc-
tured collection of arguments what show why a legal result
(e.g. a title or a right) is entailed by the law and the specifics
of a given case. For example, an opinion may ask whether a
person B has the obligation to pay a given amount of money
to a claimant A. Writing opinions is the central element of
legal training at German universities. Almost all university
exams require students to write an opinion on a given case.
Further, the First State Exam (the first part of the German
bar exam) consists of six written tests, each asking to write
a legal opinion. The strict adherence to structured and log-
ical arguments required for opinions sets legal education in
Germany apart from the system used in many other coun-
tries. Learning to write these opinions is however quite hard
for most students. Thus, supporting the process of learning
to write opinions with AI technologies may be a fruitful en-
deavour.

Argumentation in a legal opinion follows a strict style of
writing, called the opinion-style. In order to determine the
truth of a statement of law, one has to perform the four steps
of a syllogism, called the legal syllogism (German: “Justiz-
syllogismus”):
1. the premise,
2. the definition,
3. the subsumption, and
4. the result.
The premise states that a certain statement (about an obliga-
tion, a title, a right, or any other property or legal connec-
tion between two persons or a person and an object) might
be true. Then one defines the criteria under which the state-
ment is true, citing the relevant law. Within the subsumption,
the specifics of the case are mapped to the criteria set out
in the definition. Usually, the subsumption is the part of an
opinion that requires case-dependent argumentation. As the
subsumption is based on the verbal description of the case,
it is a highly fuzzy process. Lastly, if the requirements set
out in the definition are met, one concludes that the premise
is indeed true. If the definition again contains assertions that
cannot be directly mapped to specifics of the case, as they
are e.g. legal terms, the subsumption will contain further le-
gal syllogisms with these assertions as their premises. These
syllogisms are nested recursively.

We do not consider how subsumptions are made, as we
want to focus on the logical structure of opinions. Notably,

the AI techniques that should be used for performing or as-
sisting subsumptions are quite different from the ones we
use, i.e. they might be based on machine learning, natural
language processing, and text mining. Instead, we assume
that all possible subsumptions of the case have already been
made. We assume that we are presented with a given case
in terms of a set of logical atoms (instantiated ground predi-
cates) which refer to the most basic concepts of the law. Note
that this is not a restriction, but solely a clean separation be-
tween the logical and the fuzzy part of the opinion. If we,
in the future, are to apply this modelling we of cause have
to deal with extracting such a logical description based on
non-logical inputs. This may either be done using machine
learning techniques, or in collaboration with the user.

Example Case Whenever possible, we will use an exam-
ple case to illustrate the principles of our formalisation of
opinions in terms of planning problems. On June 21st K1

asked V whether he can buy a set of white floor tiles from V
– for 500 EUR. On June 23rd, V agreed. V delivered the tiles
to K three days later. K then installed the tiles in his bath-
room. Four months later, K noticed that the tiles changed
colour from white to greyish. An investigation revealed that
this was caused by a production error. K tells V that he wants
new tiles delivered to him. Neither K nor V could have no-
ticed the production error before the tiles were installed. Re-
moving the installed tiles and installing the new tiles will
cost 400 EUR.

In this case there are two questions: (1) is V required to
provide K with new tiles? (2) does V have to pay (addition-
ally) 400 EUR. We will elaborate on the specifics of the case
and the answers to the two questions throughout the paper.

3 HTN Planning
In this paper, we will use (totally-ordered) HTN plan-
ning (Ghallab, Nau, and Traverso 2004; Erol, Hendler, and
Nau 1996; Geier and Bercher 2011) to model the structure
of German legal opinions. HTN planning distinguishes two
types of tasks: abstract tasks and primitive actions. Both
are described via a name and a list of parameter variables,
each associated with a type. For example, (foo ?bar
?baz) denotes a task named foo with parameters ?bar
and ?baz. We use the syntax of PDDL (McDermott 2000)
to denote tasks. Variable names always start with a question
mark. A state is described via ground atoms of first order
logic, i.e. predicates with constants as their arguments. A
state is any subset s of these atoms. As in classical planning,
primitive actions in HTN planning carry a state transition
semantics, defined via their preconditions prec and effects
eff . prec may be any function-free first order formula refer-
ring to the variables that are parameters of prec’s actions. A
(ground) action a is executable in a state s, iff s |= prec.
The effect eff of an action consists of two sets of atoms add
and del which again may refer to the parameters of a. If a
is executed in s, it results in the state (s \ del) ∪ add. The
execution of sequences of states is defined inductively.

1Persons are customarily abbreviated by upper-case letters.
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Abstract tasks represent more complex courses of action
and do not carry a (direct) state-transition semantics. In-
stead, their semantics is defined via so-called decomposition
methods m = (t, tn). Here, t is the task the method decom-
poses and tn is a task network – for totally-ordered HTN
planning this is a sequence of other tasks, both primitive
and abstract. tn can also be an empty sequence. Applying
such a method means to replace an occurrence of t with tn.
The objective in HTN planning is given in terms of an ini-
tial abstract task tI . We now maintain a sequence π of tasks
and initialise it with tI . We repeatedly apply decomposition
methods to tasks in π, until π contains only primitive ac-
tions. This derived plan π is a solution to the HTN planning
problem if it is executable in the given initial state sI .

Additionally, many HTN planners (e.g. SHOP (Nau et
al. 1999)) allow for method preconditions. Such a precon-
dition prec associated with a method m restricts the ap-
plication of m to cases where the state prior to the first
task originating from m satisfies prec. Since we consider
only totally-ordered models, this is equivalent to the fol-
lowing restriction. Consider a current sequence of tasks
π = t1 . . . ti−1titi+1 . . . tn. Then a method precondition for
a method m applicable to ti must hold in the state between
ti−1 and ti.

4 Representing the Structure of Opinions
As stated before, we assume that the specifics of the
case we are to consider are already converted into a set
of atoms. In our modelling, these atoms form the ini-
tial state sI . In our example case, this includes e.g. the
facts (hasCondition whiteTiles beingGrey),
(usualCondition whiteTiles beingWhite),
and (handover V K whiteTiles June26). All of
them model (relevant) aspects of the given case.

A legal opinion in its entirety determines whether a given
premise holds or not. Throughout the opinion, sub-opinions
may discuss different other premises, each asking whether
a specific statement of law holds. Thus, we have to repre-
sent the notion of a premise in terms of the concepts of HTN
planning. A natural way to do so is to model premises as
tasks. This way, e.g. the initial abstract task tI will repre-
sent the premise of the whole opinion. In our example case,
this would be either (obligationToProvide K V
tiles) or (obligationToPay K V 400EUR). In
an opinion, we have to state the definition pertaining to the
premise P . Next, we either have to perform a subsumption
or have to start inner opinions that determine the truth of
statements made in P ’s definition.

If we only have to perform a subsumption, the premise P
only depends on the most basic concepts of the law, which
have to be inferred from the textual description of the case.
As stated before, we do not deal with the intricacies of ex-
tracting knowledge from the case in this paper, but only with
modelling a legal opinion based on it. As such, we assume
that the facts of the case are already fully modelled as ground
first order statements and can thus be checked in a primi-
tive action’s precondition. Thus, any premise P that only re-
quires a “pure” subsumption will be modelled as a primitive
action who’s preconditions will check the necessary facts.

If the premise’s definition refers to non-basic concepts,
we have to introduce inner opinions. We do this via mod-
elling such a premise as an abstract task A and introduce
the inner opinions via a method m applicable to A. m’s task
network contains a task for every premise that needs to be
checked in order to be able to determine the truth of the main
premise A.

The derivation of a plan π will correspond to the structure
of an opinion for the given case. To extract the structure of
the opinion, we simply follow the decomposition methods
applied for obtaining π. We start out with an opinion con-
taining the premise represented by the initial abstract task tI .
When looking at the method applied to tI , we know which
definition and sub-premises should be inserted into the opin-
ion. Similarly, if a decomposition yields a primitive action,
the opinion will contain a subsumption.

5 Schemata for Inner Opinions
We have just stated that decomposition methods will intro-
duce the necessary inner opinions. This assertion is some-
what vague and needs clarification. The central question at
this point – and of this paper – is which criteria need to be
checked in order to be able to establish the truth of a given
statement of law. For that – at least in civil law systems –
we have to turn to the written law. Most legal norms de-
scribe at their core an implication where a set of premises
are mapped to a consequence. There are other types of le-
gal norm, e.g. describing the intention of the legislator (e.g.
§ 1 of Germany’s Nuclear Law: “The purpose of this law
is (1.) to end the use of nuclear energy for commercial pur-
poses in an orderly fashion . . . ”) or describe broad abstract
statements (e.g. Article 1 of Germany’s Basic Law: “Human
dignity shall be inviolable.”). These types of statements are
not used for directly determining whether a given statement
of law is true, but (for (1.)) for interpreting under-specified
terms in the law. How such interpretations may be consid-
ered within a formalised version of the law is out of scope of
this paper and may be considered in future work. Thus we
are interested in norms that provide as their consequence the
statementA – our current premise represented by an abstract
task. Of course there can be multiple norms providing the
same consequence, and there are often norms that provide
exceptions, counter-exceptions, counter-counter-exceptions,
and so on for a given assertion. These are known to be quite
difficult to handle in a general fashion; see for negation in
legal reasoning e.g. (Kowalski 1989).

When writing an opinion the complexities of these logical
structures are often simplified by – to some degree – stan-
dardised structures for checking whether a given assertion
is true or not (Kischel 2019, p. 419f.). Instead of solely ap-
plying the word of the law, in many practical cases there are
established so-called schemata that outline how a specific
assertion should be checked, in which order the individual
premises should be checked, which exceptions and counter-
exceptions should be considered, and in which order. There
are even whole books that summarise these schemata for
different areas of the law (Maties and Winkler 2018). This
apparent “standardisation” serves (in the authors’ opinion)
the purpose of conformity of expectations: the reader of an
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opinion knows what the writer wants to do next and why the
author does or does not discuss certain issues at each point
while reading the opinion. Schemata also ease a student’s
understanding of the law, as they are able to “follow them”
and by that will obtain the correct result in applying the law.
For that however, they first have to understand their mean-
ing, learn them, and be able to extract them from the written
law.

Naturally there are situations when applying the law,
where no schemata are available, i.e. where the meaning of
the law must be interpreted manually. How this is done is a
quite complex topic, as it e.g. includes argumentation of the
intent of the legislator. Formalising this kind of fuzzy area of
applying the law is thus difficult and we consider it to be out
of scope of our work. We will restrict our modelling to areas
of the law where well-established schemata for applying the
law exists. The difficulty in practise lies in correctly apply-
ing these schemata and extracting the relevant facts from a
description of the case. The work in this paper is however
still necessary and useful, as it lays the foundation for being
able to connect reasoning about the more fuzzy parts of legal
argumentation with those that are more standardised.

6 Logical Structure of Schemata
As discussed in the previous section, when modelling what
needs to be checked in order to establish the truth of a given
statement of law, we use the well-defined schema for it. Such
a schema is essentially a list of conditions under which a
given statement holds. As an example, consider the require-
ments for supplementary performance in German Warranty
Law. Supplementary performance is the process or act with
which a bought object that is defective is repaired or re-
placed, i.e. the case where the buyer is given e.g. a non-
working object and thus has the right to either get the object
repaired or replaced. This is exactly the situation we face in
question (1) of our example case: K wants to have the tiles
replaced.

Supplementary performance is required if (1) vendor and
buyer have a valid sales contract, (2) the purchased object
has a “defect” (German: “Sachmangel”), (3) this defect was
present when the risk passed from the vendor to the buyer
(German: “Gefahrübergang”) and (4) the rights arising from
defects are not precluded ((Maties and Winkler 2018), Nr.
178). If one is to check whether a right to supplementary
performance exists, one has to check these four criteria. Fur-
ther, there are two types of supplementary performance: re-
pair and replacement. In our example case, K wants the
tiles to be replaced. The schemata for replacing an object
is this case required (1) that a right to supplementary per-
formance exists, (2) K has selected replacement, and (3) no
right to withhold performance because of disproportional-
ity ((Maties and Winkler 2018), Nr. 178). When checking
whether K has the right to new tiles, the top-most structure
of the opinion is as shown in Fig. 1. In an opinion the condi-
tions just listed always appear in the same fixed order. Fur-
ther, if one of the conditions is not satisfied, the opinion must
discuss all conditions prior to the not satisfied one as well,
but not the ones afterwards. If, e.g. the object has no defect
under the law, one still has to show that there is a valid sales

contract, but can omit discussing the passing of the risk and
so on.

However, not all schemata describe conjunctions of con-
ditions. For example, there are in total seven causes for a
defect of an object – detailed in § 434 and § 435 BGB.2
In order for an object to have a defect under the law, one
of these causes suffices, i.e. they form a conjunction. One
might think that checking only one – namely the one con-
stituting the defect – might be sufficient in an opinion. This
is not the case. The causes for a defect have an implicit and
customary order in which they have to be discussed ((Maties
and Winkler 2018), Nr. 176 and 177). Notably, if e.g. the
fourth cause of a defect is present, but not the first three,
an opinion must discuss and reject the first three causes. On
the other hand, there are also disjunctions, for which it is
not necessary to check all possible causes until the first one
is successful. Examples are e.g. causes for the invalidity of
declarations and causes for a suspension of the statute of
limitations. Here, it is sufficient to check the single cause
that will lead to the desired result. Lastly, there are also dis-
junctions for which all conditions must be checked fully, i.e.
one has to check any possible criterion causing a statement
to become true, irrespective of the truth of the other criteria.
One notable example for this is the crime of causing bodily
harm (“Körperverletzung”): it requires that the perpetrator
to either “physically assault” someone or to cause “damages
to health”. In an opinion, both criteria must be checked –
even if the first one is already fulfilled – while one of the
two being fulfilled is sufficient.

When modelling schemata in an HTN planning problem,
we will thus distinguish four types of logical connectors:
1. conjunction,
2. ordered disjunction,
3. free disjunction, and
4. complete disjunction.
Next, we have to consider that it is not only sufficient for an
opinion to check whether a given statement of law holds. In
many cases it is also necessary to check whether the con-
trary is true, i.e. that a given statement does not hold. We
have already seen two such cases above, namely the condi-
tions (4) no preclusion and (3) no right to withhold. As a
further example, a cause for a defect is that the vendor has
not provided a manual and the buyer did not successfully
assemble the object (§ 434 II 2 BGB, the so-called IKEA-
clause). Similarly, a claim can only be pursued as a general
rule, if the statute of limitations has not expired. Note that
these negations can be nested in complex cases – or if we
want to check e.g. the absence of a claim between two per-
sons.

Thus our modelling of schemata has to handle negations.
A purely logical approach to negation is not suited as legal
opinions require specific structures of argumentation, which
are different from a purely logic-based argumentation. Con-
sider the negation of a conjunction, i.e. we want to check that
a given statement is not true and the truth of this statement
is based on a conjunctive schema. From a logical point-of-
view, it is sufficient to find one condition x in the conjunc-

2BGB = Bürgerliches Gesetzbuch, Germany’s civil code
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delivery of new tiles

supplementary performance replacement selected no right to withhold

sales contract defect passing of risk no preclusion . . .

. . . . . . . . . . . .

Figure 1: Structure of an opinion for the example case at its top layers.

tion that is not true. However in an opinion, one also has to
show that all conditions preceding x are true, i.e. one has to
find the first failing condition. For all three types of disjunc-
tions, we have no alternative but to show that all its condi-
tions are false.

7 Representing the Logic of Schemata
As we have discussed in Sec. 4, the inner opinions needed
to ascertain the truth of a statement A shall be the tasks
contained in methods decomposing A. Which assertions we
have to check in inner opinions and how their result influ-
ences the truth of the overall statement A is determined by
A’s schema. In our modelling, the method decomposing A
will always contain tasks for all conditions B1, . . . , Bn con-
tained in the schema. If, in a concrete opinion, a specific
condition Bi does not have to be checked, it will be decom-
posed using an empty decomposition method – denoting that
it should not be part of the opinion. Hence, what remains is
to provide a mechanism for suitably modelling the logical
structure of the schema and its implications on the assertions
to be checked in an opinion.

Representing Negation as a Parameter
Next, we note that checking a specific assertion, i.e. an ab-
stract task, may either be done with the objective of proving
the assertion or proving the negation of the assertion. Thus
it might seem sensible to add a parameter to each abstract
task, denoting the mode in which it is to be checked. If we
do this though, every task inside a method will need such
a parameter. Next, these parameters must be separate vari-
ables for each condition in a schema, as if we check a con-
junction or the negation of a disjunction, not all conditions
are checked with the same objective. Assertions in the meth-
ods precondition would have to ensure that the variables are
set correctly for each of the subtasks. We don’t use such a
modelling for three reasons. First, it unnecessarily increases
the size of the ground instantiation as the variable determin-
ing the objectives for each Bi. Second, such a modelling
may make the model harder to solve when using grounded
progression search algorithms, which are currently one of
the best algorithms for HTN planning (Höller et al. 2018).
Since the variables are part of the decomposition method,
we have to guess which of the conditions B1, . . . , Bn will
hold when we apply the decomposition method. With the
modelling we propose below, we defer this decision until the

point where we actually check each of the individual con-
ditions Bi. Third, the rules on determining the conditions’
objectives have to be encoded once per method, thus clut-
tering the model with unnecessary repetitions and making it
less readable. With the method that we propose below, these
rules are encoded only once in the domain and remain static,
e.g. if new material law is added to the domain – thus easing
modelling significantly.

Representing Negation as a State Variable
Instead of using parameter variables to denote the objective
with which we check each of the conditions B1, . . . , Bn,
we use a mode that we set in the state. We model the mode
as a predicate (mode ?m). Each abstract task A (i.e. its
decomposition) will check the objective set out by the mode
which holds in the state directly before A. After A has been
checked in the given mode, our modelling sets the current
mode back to the mode with whichA has been checked. If it
is not possible to check the assertion ofA in the given mode,
it will not be possible to decompose it into an executable
plan. This way, we can guarantee that the created opinion
is in itself consistent: a valid plan can only be found if the
result matches the assertion that was set out in the beginning.
Further, it allows us to create planning problems where the
result of the opinion is unknown. Here, the initial abstract
task is a dummy, that decomposes into the actual premise of
the opinion preceded with a primitive action that will either
set to mode to check the premise positively or negatively.

In addition to two modes representing objectives, we in-
troduce three additional modes we use for controlling which
conditions are checked for negated conjunctions and non-
negated disjunctions. We use the following five modes with
their respective meaning:
• yes – we attempt to show that the condition holds
• no – we attempt to show that the condition does not hold
• indifferent – we have to show that the condition

holds or not, but the result is irrelevant
• ignore – we do not have to consider this condition, but

do not yet know whether the main statement A is true nor
not

• done – we do not have to consider this condition, but
already know whether the main statement A holds

Any method for A uses its method precondition to de-
termine the current mode via a precondition (mode
?initMode). If ?initMode is yes, we know that we
have to check the assertion represented by A positively, if it
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is no negatively. If the mode is indifferent, it does not
matter whether we check the statement positively or nega-
tively. These three cases are handled by the same decompo-
sition method. This way we have to model the schema for A
only once in the planning domain and eliminate unnecessary
redundancy. The method precondition of this method checks
that ?initMode is either yes, no, or indifferent.

If ?initMode is either ignore or done, we don’t have
to check the assertion at all. Thus for these cases, the plan-
ning domain contains an empty decomposition method (i.e.
one without subtasks) that checks whether ?initMode is
either ignore or done in its precondition. In total, we
create only two decomposition methods for each statement
A, one for the case where we actually have to execute A’s
schema and one where we completely forgo checking A.
The first type of methods actually applying A’s schema will
contain a subtask for each of the conditions B1, . . . , Bn.
Whether any condition Bi will be checked in a concrete
opinion is determined by the method applied to it – if the
second type of method is applied, it will not be contained in
the opinion. This way, we can model the schemata fully in-
side a single method – without any complicated if-then-else
structure in the method.

Methods with Mode-Checking
When checking an assertionA via a method of the first type,
we have to set the correct checking-mode before each of
the tasks representing the conditions B1, . . . , Bn contained
in A’s schema. The corresponding tasks then have to per-
form their checks according to the set mode. Once the task
has been executed, we have to set the mode for the next
task, execute it, and repeat until all conditions of the asser-
tion’s schema have been handled. Determining which mode
can be used for each of the subtasks depends on multiple
factors: the type of the logical connector that the schema
uses, the mode of the assertion we are currently checking,
and the mode with which the previous subtasks have been
checked. Firstly, instead of basing the result on the modes
for all previous subtasks, we only consider the last one. Its
mode will have aggregated all necessary information about
the already checked conditions. For example, if a condition
Bi was successfully checked with the mode yes in a con-
junction, all previous conditions Bj with j < i were also
checked successfully with the mode yes. Here, the mod-
elling capabilities of HTN planning come into play: The
method that has checked the previous condition will have
set the mode back to the mode it was “called”. Via this me-
chanic, we know in A’s method the mode with which the
subtask was called without the need for adding additional
variables to the method – which would increase the size of
the model’s grounding and make the method itself less read-
able. Secondly, we use the variable ?initMode to deter-
mine the checking mode of A itself. This is – once again –
only possible as we are using HTN planning. It allows us to
enforce that a given set of actions – those setting the modes
– share a common parameter. This essentially forms a kind
of a brace-like structure, i.e. a context-free structure, which
are not expressible with classical planning, but with HTN
planning (Höller et al. 2014).

Thus the mode that should be set of a condition Bi de-
pends on: (1) the logical connector, (2) the overall mode of
A, and (3) the mode that was set to Bi−1. In Tab. 1 we show
how we set the mode for Bi depending on these three in-
puts. We additionally show how we set the mode initially
(the start mode). Lastly, we list which mode is required to
hold after the last condition Bn has been handled. With this
check, we ensure that in the case of a positively checked
disjunction one of the conditions was checked with the yes
mode and for a negatively checked conjunction that one of
the conditions was checked with the no mode. For the re-
verse cases (positive conjunction and negative disjunction),
the correct modes are already enforced by the mode setting.

To set the modes we use a primitive action (set-mode
?logic ?initMode) implementing the state transi-
tion function of Tab. 1. Here ?logic is a vari-
able that can be instantiated with four constants: one
for each of the four types of logical connectors. We
use actions (start-mode ?logic ?initMode) and
(end-mode ?logic ?initMode) for setting the ini-
tial mode, checking the final mode and setting the mode
after the last condition back to ?initMode. We add the
set-mode action prior to every task Bi in a method and
start-mode and end-mode as the first and last tasks in
each method.

The mode-setting in Tab. 1 assumes that the conditionsBi

are occurring positively in the schema. For handling nega-
tion, we use an additional action invert. If executed, it
will change the yes mode into no and vice versa – effec-
tively implementing a negation of a specific check. It will
not alter the mode if it is set to anything other than yes or
no. In total, if schema states that A holds if either B, not C,
or D hold, its method will contain the following tasks and
actions:
1. (start-mode disj-seq ?m)
2. (set-mode disj-seq ?m)
3. (B)
4. (set-mode disj-seq ?m)
5. (invert)
6. (C)
7. (invert)
8. (set-mode disj-seq ?m)
9. (D)
10. (end-mode disj-seq ?m)
If we are to use this method in a setting where neither B, nor
C, nor D holds, A will hold. The execution and mode-setting
in this case is shown in Fig. 2.

8 Modelling
We have modelled (parts of) German Warranty Law using
our methodology. Our modelling solves the two questions
we set out for our example case in the beginning of the paper.

For this, we also had to model parts of connected areas
of civil law, e.g. parts of contracts law, or consumer rights.
The domain currently consists of 42 abstract tasks, 84 lifted
decomposition methods, and 35 lifted primitive actions.
The model is available at https://github.com/galvusdamor/
htnlaw. The example case we’ve outlined in the beginning
is solved by an SAT-based HTN planner (Behnke, Höller,
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target last conjunction ordered disjunction free disjunction complete disjunction
yes start mode yes no ignore no
no start mode yes no no no
yes yes yes done done indifferent
yes no – yes/no – yes/no
yes ignore – – ignore/yes –
yes done – done done –
yes indifferent – – – indifferent
no yes yes/no – – –
no no done no no no
no done done – – –
yes end mode yes yes/done yes/done yes/indifferent
no end mode no/done no no no
indifferent end mode yes/no/done yes/no/done yes/no/done/ignore yes/no/indifferent

Table 1: State transitions for modes. Start mode indicates the mode in which checking starts while the last two lines (denoted
with “end mode”) denotes the states in which checking may end with success. Dashes show transitions that are not allowed.

S 0
(m yes)

start-mode

S 1
(m no)

set-mode

S 2
(m no)

B

S 3
(m no)

set-mode

S 4
(m yes)

invert

S 5
(m no)

C

S 6
(m no)

invert

S 7
(m yes)

set-mode

S 8
(m done)

D

S 9
(m done)

end-mode

S 10
(m done)

Figure 2: Structure of the evaluation of the assertion: A, if either B, not C, or D. The disjunction is an ordered disjunction. We
assume that neither B, C, nor D hold, i.e. A holds because C does not hold. The initial objective is to show that A holds. S i
denotes that ith state, while (m x) indicates the mode x set in this state.

and Biundo 2019a; 2018; 2019b) in 13.7 seconds on an Intel
i5-4300U.

9 Conclusion and Outlook
In this paper, we showed that the structure of German legal
opinions can be formalised in terms of HTN planning. This
formalisation represents objectives to be checked as abstract
tasks and uses decomposition methods to check whether the
assertion holds using the established schemata for doing so.
We showed how the various types of logical structures oc-
curring in these schemata can be modelled within decom-
position methods by exploiting the high expressiveness of
HTN planning. The presented modelling relies on a prior
formalisation of the facts of a given case in terms of appro-
priate first order atoms. In the future, we may use the mod-
elled domain to enable a semi-supervised formalisation of
subsumption. We may, in turn use this to assist law students
in learning to structure their thoughts and to write opinions
themselves. For example, we could verify that the structure
of options written by students complies with the schemata
using HTN plan verification (Behnke, Höller, and Biundo
2017; Barták, Maillard, and Cardoso 2018). Based upon the
detected errors, we could develop techniques to provide use-
ful hints to the students on how to improve their opinions.
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