
Signaling in Contingent Multi-Agent Planning

Shashank Shekhar
Department of Computer Science

Ben Gurion University
shekhar@cs.bgu.ac.il

Ronen I. Brafman
Department of Computer Science

Ben Gurion University
brafman@cs.bgu.ac.il

Guy Shani
Information and Software Systems Eng.

Ben Gurion University
shanigu@bgu.ac.il

Abstract

Collaborative Multi-Agent Planning (MAP) under uncer-
tainty with partial observability is a notoriously difficult prob-
lem. Although such problems are often modeled as Dec-
POMDPs, recent work has demonstrated that planners for
Qualitative Dec-POMDPs can scale up to much larger prob-
lem sizes. The best current QDec-POMDP solver is based on
a factored planning (QDec-FP) algorithm in which the multi-
agent problem is reduced to multiple single-agent problems.
In this paper we describe how we augment this approach with
the ability of agents to signal information by changing the
state of the world (e.g., turning on a light to signal whether
a door is open). To support signaling, the QDec-FP planner
must model and reason about the knowledge of each agent
separately. Our modified version of the QDec-FP algorithm
augments the translation used with propositions representing
individual agents’ knowledge, and adds preprocessing steps
that augment the domain with signaling macros, and post-
processing steps that utilize these macros. The resulting algo-
rithm supports signaling, and also greatly improves the plan-
ner’s ability to handle problems with multiple objects.

1 Introduction
In many real-world problems, agents collaborate to achieve
joint goals. For example, disaster response teams typically
consist of agents that have multiple tasks to perform, some
of which require the cooperation of several agents. In such
domains, agents may have partial information, where they
can sense only their immediate surroundings. As agents are
often located in different positions and may possess differ-
ent sensing abilities, their runtime information states differ.
While this can be overcome using communication, the com-
munication infrastructure can be damaged, or communica-
tion may be costly and should be reasoned about explicitly.

In this setting, it is common to compute a policy for
all agents jointly using a central engine. The resulting pol-
icy, however, is executed by the agents in a decentralized
manner, and agent communication is performed through ex-
plicit actions. Decentralized POMDPs (Dec-POMDPs) offer
a rich model for capturing such multi-agent problems (Bern-
stein et al., 2002; Oliehoek and Amato, 2016), but Dec-
POMDP solvers have difficulty handling larger problems.
Qualitative Dec-POMDP (QDec-POMDP) were introduced
as an alternative model, replacing the quantitative proba-
bility distributions over possible states with qualitative sets

of states (Brafman, Shani, and Zilberstein, 2013). QDec-
POMDPs can also be viewed as the multi-agent extension of
the well known Contingent Planning model (Hoffmann and
Brafman, 2005). At least for deterministic problems, where
partial observability plays the key role, QDec-POMDP algo-
rithms scale much better than Dec-POMDP algorithms. This
was demonstrated clearly by the IMAP solver (Bazinin and
Shani, 2018), which was later improved by using factored
planning techniques (Shekhar, Brafman, and Shani, 2019).

The factored planning algorithm (QDec-FP) (Shekhar,
Brafman, and Shani, 2019) starts by solving an abstract and
simplified centralized problem which we call the team prob-
lem. The team problem is similar to the original MAP prob-
lem, but assumes centralized execution, where all agents are
controlled at execution time by a single meta-agent that has
access to all their observations. The solution to the team
problem serves as the skeleton for the true MA solution. To
extend this skeleton to a complete solution, each agent needs
to (independently) ensure that it can carry out its part in the
skeleton solution. Thus, each agent may extend the skele-
ton with additional actions. If all agents can complete their
part of the skeleton, a final step of aligning the plans of the
agents is carried out. If some agent cannot complete its part,
the algorithm backtracks and must seek a new team solution.

QDec-FP, treats the team planning problem as a single-
agent problem and uses a single-agent contingent solver to
solve it. It does not keep track of the knowledge acquired
at run-time by each agent separately. Therefore, the team
plan may require that agent ϕj act differently based on the
value of some proposition p observed by agent ϕi, even if ϕj
cannot observe p. While the second stage of QDec-FP will
fix this problem or rule out this solution, it would be much
more efficient if QDec-FP incorporated reasoning about the
knowledge of individual agents during team planning. This
has two important advantages: First, it will lead to the gener-
ation of more informed team plans that are easier to extend.
Second, it allows us to model, within the team plan, the pro-
cess of explicit and implicit communication, which we refer
to here as signaling.

Signaling refers to a situation where agent ϕi notifies
agent ϕj of the value of some attribute that ϕj cannot ob-
serve, by manipulating another attribute that ϕj can observe.
For example, suppose agent ϕj cannot sense whether a door
is open, but it can sense whether the light is on, while agent

ϕi can sense both. If ϕi can also turn the light on and off, it
can signal the door state to ϕj by turning on the light if and
only if the door is open.

More generally, signaling handles cases where ϕi can
sense p but ϕj cannot. Agent ϕi might be able to commu-
nicate this information to ϕj directly, if a communication
action exists, or indirectly, by making sure that the value of
some variable q that agent ϕj can sense, is correlated with
the value of p. Technically, signaling consists of the follow-
ing steps: (1) Agent ϕi senses p. (2) Agent ϕi sets the value
of q to the value of p. (3) Agent ϕj senses q. To be sound,
this behavior must be consistent between the two execution
branches that follow the sensing of p: if p is true, we must
ensure q is true. If p is false, we must ensure q is false.

Some problems cannot be solved without signaling, while
others can be solved more efficiently with signaling. To sup-
port signaling in QDec-FP, we must first address two key
technical issues. First, we must explicitly account for the
knowledge of different agents. Currently, when the planner
generates a team solution, it assumes centralized execution
and joint knowledge of all agents. Therefore, signaling ac-
tions have no impact on the state, and will not be inserted
into the team plan. We address this by explicitly modeling
the knowledge of each agent, and allowing an action in the
team plan only if the executing agent can verify that its pre-
conditions are true. Aside for supporting the generation of
plans with signals, this more accurate model of the MA sys-
tem prunes many plans that were previously generated by
the team planner, yet are not extendable to MA plans. This
reduces the need for backtracking between team plans, but
places a heavier burden on the computation of the team plan.

In addition, we must consider the implementation of sig-
naling. Signaling must ensure correspondence between the
signaled proposition and the signaling proposition, which is
not a local constraint. That is, if we want to signal p’s value
using q, we must ensure a correlated value for q both in the
branch of the plan in which p is true and in the branch in
which p is false. Because this is a constraint over the plan-
tree, rather than its branches, supporting it is more com-
plicated. We solve this by adding a signaling macro that
is post-processed after the team-plan generation. Intuitively,
one can understand this macro as expressing a commitment
by one agent to make sure that from this point-on, p and q
will be correlated. This allows other agents to deduce the
value of one proposition from that of the other.

In this paper we describe a new algorithm, QDec-FPS,
which provides both support for reasoning about the indi-
vidual knowledge of agents and exploits it to support sig-
naling. We also provide an initial empirical evaluation of
QDec-FPS and show that it allows us to solve problems that
were not solvable by previous methods, because they require
that some agents must act differently given different values
of a variable they cannot observe, as well as to scale up the
QDec-FP approach to much larger problems even when sig-
naling is not required.

2 Background
We describe the QDec-POMDP model, the structure of its
policies, and the QDec-FP solver.

2.1 QDec-POMDPs
We define a flat state space QDec-POMDP, followed by a
factored definition motivated by contingent planning model
definitions (Bonet and Geffner, 2014).

Definition 2.1. A qualitative decentralized partially observ-
able Markov decision process (QDec-POMDP) is a tuple
Q = 〈I, S, b0, {Ai|i ∈ I}, δ, {Ωi}, ω,G〉 where

• I is a finite set of agents indexed 1, ...,m. We often refer
to the ith agent as ϕi.

• S is a finite set of states.
• b0 ⊂ S is the set of states initially possible.

• Ai is a finite set of actions available to agent ϕi, and ~A =
⊗i∈IAi is the set of joint actions, where ~a = a1, ..., am
denotes a particular joint action.

• δ : S × ~A → 2S is a non-deterministic Markovian tran-
sition function. δ(s,~a) denotes the set of states the can be
reached when taking joint action ~a in state s.

• Ωi is a finite set of observations available to agent ϕi and
~Ω = ⊗i∈IΩi is the set of joint observation, where ~o =
o1, ..., om denotes a particular joint observation.

• ω : ~A× S → 2
~Ω is a non-deterministic observation func-

tion. ω(~a, s) denotes the set of possible joint observations
~o given that joint action ~a was taken and led to outcome
state s. Here s ∈ S, ~a ∈ ~A, ~o ∈ ~Ω.

• G ⊂ S is a set of goal states.

We do not assume here a finite horizon T , limiting the
maximal number of actions in each execution. We focus,
however, on deterministic outcomes and deterministic ob-
servations. In such cases a successful solution is acyclic,
hence, there is no need to bound the number of steps. Ex-
tension to domains with non-deterministic outcomes with a
bounded horizon is simple, but extensions to infinite hori-
zon and non-deterministic outcomes is beyond the scope of
this paper. We assume a shared initial belief, like most Dec-
POMDP models, which is natural for an off-line centralized
algorithm.

We focus on a factored representation of a
QDec-POMDP, specified as follows: 〈I, P, {Ai|i ∈
I},Pre,Eff ,Obs, b0, G〉 where I is a set of agents, P is
a set of primitive propositions, ~A is a vector of individual
action sets, Pre , Obs , and Eff are the precondition, obser-
vation, and effects functions, b0 is the initial state formula,
and G is a set (conjunction) of goal propositions.

The state space, S, consists of all truth assignments to P ,
and each state can be viewed as a set of literals. Its initial
states and goals are all states that satisfy the initial state for-
mula and the goal conjunction, respectively.

Its transition function δ is defined using Pre and Eff as
follows: The precondition function Pre maps each individ-
ual action ai ∈ Ai to its set of preconditions, i.e., a set of lit-
erals that must hold whenever agent ϕ executes ai. Precon-
ditions are local, i.e., defined over ai rather than ~a, because
each agent must ensure that the relevant preconditions hold
prior to executing its part of the joint action. We extend Pre

to be defined over joint actions {~a = 〈a1, .., am〉 : ai ∈ Ai}
(where m = |I|): Pre(〈a1, .., am〉) = ∪iPre(ai).

Brafman, Shani, and Zilberstein (2013) define an effects
function Eff mapping joint actions into a set of pairs (c, e)
of conditional effects, where c is a conjunction of literals
and e is a single literal, such that if c holds before the exe-
cution of the action, e holds after its execution. Thus, effects
are a function of the joint action and not a simple union of
effects of local actions, due to possible interactions between
the different local actions. However, in line with Bazinin and
Shani (2018); Shekhar and Brafman (2018), we employ a
more structured definition of joint actions.

We assume that single-agent actions (of a joint action)
executed concurrently do not interact, unless specified ex-
plicitly. Such interactions are then modeled by collaborative
actions. Collaborative actions have the same form as single-
agent actions, except that they have multiple agent param-
eters. Thus, an agent may have a single-agent move action,
as well as participate in a collaborative, two-agent action,
joint-lift, for lifting a table. One can think of joint-lift as two
concurrent single-agent lift actions, as modeled in (Shekhar
and Brafman, 2018). If a collaborative action such as joint-
lift exists, and a single-agent lift exist, too, then it is forbid-
den for the planner to schedule two separate single-agent lift
actions at the same time. If it wishes to perform the two lift
actions concurrently, it must use the joint-lift action. When
concurrent actions that delete another agent’s preconditions
or object capacity constraints (Crosby, Jonsson, and Rovat-
sos, 2014) are not allowed, then one can consider only joint
actions that consist of a single (possibly collaborative) ac-
tion at each step with all other agents performing no-ops,
greatly simplifying the process. Later, the plan can be made
more compact in post-processing, e.g., using the technique
of Crosby, Jonsson, and Rovatsos (2014). For a deeper dis-
cussion of the definition of joint actions, see (Shekhar and
Brafman, 2018).

For every joint action ~a and agent ϕi, Obs(~a, i) =
{p1, . . . , pk}, where p1, ..., pk are the propositions whose
value agent ϕi observes after the joint execution of ~a. The
observation is private, i.e., each agent may observe different
aspects of the world. We assume that the observed value is
correct and corresponds to the post-action variable value.

In this paper we assume that actions either sense or
change the state of the world. Sensing actions do not affect
the world state, i.e., if a is a sensing action then Eff = ∅.
Non-sensing actions do not provide any information, that is,
Obs(a) = ∅. This is not a limiting assumption, as every
action can be separated into a non-observation and a sens-
ing action by adding suitable propositions forcing the two
to appear consecutively in every plan. Furthermore, we as-
sume that any agent has a noop action, with Pre(noop) =
Eff (noop) = Obs(noop) = ∅.

While QDec-POMDPs allow for non-deterministic ef-
fects and non-deterministic observations, we focus in this
paper only on deterministic effects and observations, and
leave discussion of an extension of our methods to non-
determinism to future research.

Another important concept in multi-agent planning is the
notion of public and private actions and propositions (Braf-

man and Domshlak, 2008). A proposition that appears in the
action descriptions of multiple agents is called public. Also,
all goal propositions are public. An action is a public ac-
tion if its precondition or effect contain a public proposition.
A proposition that appears only in the actions of agent ϕi
is called private to ϕi. An action whose preconditions and
effects contain only private propositions is a private action.

2.2 Policy Trees
We can represent the local plan of an agent ϕi using a policy
tree τi. Each node of the tree is labeled by an action, and
edges that follow a sensing action are labeled by an obser-
vation. To execute the plan, each agent performs the action
at the root of the tree and then uses the subtree labeled with
the observation it obtained for future action selection. For
a policy tree τi for agent ϕi, and a possible observation oi
for ϕi, τioi denotes the child subtree of the root of τi that is
reached via a branch labeled by oi.

Let ~τ = 〈τ1, τ2, · · · , τm〉 be a vector of policy trees,
also called a joint policy. We denote the joint action at
the root of ~τ by ~a~τ , and for an observation vector ~o =
o1, . . . , om, containing each agent’s observation, we define
~τ~o = 〈τ1o1

, . . . , τmom
〉.

As actions may have preconditions, a joint policy tree
is executable only if the preconditions of each action hold
prior to its execution. To check this, we can maintain the set
of states possible at each node during the execution of the
joint policy, typically called the belief state. One must dis-
tinguish between the belief state of the entire system and the
belief of a single agent. Online, each agent may have less
information, as it does not know of the observations of other
agents. Hence, it cannot distinguish between all branches of
the joint-policy. We denote by~b the set of agent-specific be-
liefs. When computing the team plan, we are assuming a
centralized execution engine and a centralized belief.

To follow policy ~τ , we first consider the action ~a~τ given
the current belief state b. It must be the case that b |=
pre(~a~τ). In that case, we say that ~a~τ is executable in b. After
the agents execute ~a~τ and observe ~o, their new belief state is
tr(b, ~o,~a~τ) = {~a~τ (s)|s ∈ b,~a~τ (s) |= ~o}.

We say that joint policy ~τ is executable given initial be-
lief b if (1) ~a~τ is executable in ~b; (2) if aτi is a part of a
collaborative action and ϕj is another agent participating in
that collaborative action, then aτj contains ϕj’s part of that
action; (3) For every possible joint observation ~o, ~τ~o is exe-
cutable given tr(b, ~o,~a~τ).

A joint policy is called a solution if it is executable, and
the belief state in all leaf nodes in the tree satisfies G. Note
that unlike Dec-POMDPs, for QDec-POMDPs there is no
obvious notion of optimal policy, or optimization criterion,
although one could strive to find trees with smaller depth, or
trees that minimize the maximal branch cost.

Example 1. We now illustrate the factored QDec-POMDP
model using a simple box pushing domain (Figure 1). In this
example there is a one dimensional grid of size 3, with cells
marked 1-3, and two agents ϕ1 and ϕ2, starting in cells 1
and 3. In each cell there may be a box, which needs to be
pushed upwards. The left and right boxes are light, and a

Figure 1: Illustration of Example 1 showing the box pushing
domain with 2 agents and a possible set of local plan trees
that produce a solution. Possible agent actions are sensing
a box at the current agent location (denoted SB), moving
(denoted by arrows), pushing a light box up alone (denoted
P), jointly pushing a heavy box (denoted JP), and no-op.

single agent may push them alone. The middle box is heavy,
and requires that the two agents push it together.

Here P = {AgentAt i,pos,BoxAtj,pos,Heavyj} where
pos ∈ {1, 2, 3} is a possible position in the grid, i ∈
{ϕ1, ϕ2} is an agent, and j ∈ {1, 2, 3} is a box index.
In the initial state each box may be in or out of the grid
— b0 = AgentAtϕ1,1 ∧ AgentAtϕ2,3

∧
j=1,2,3(BoxAtj,j ∨

¬BoxAtj,j). There are therefore 8 possible initial states.
The allowed actions for the agents are to move left

and right, to push a light box up, or jointly push a
heavy box up with the assistance of the other agent.
There are no preconditions for moving left and right,
i.e. Pre(Left) = Pre(Right) = φ. For an agent
ϕ to push up a light box j, agent ϕ must be in the
same place as the box. That is, Pre(PushUpϕ,j) =
{AgentAt ′ϕ,j ,BoxAtj ,¬Heavyj}. For the collaborative
joint push action the precondition is Pre(JointPushj) =
{AgentAtϕ1,j ,AgentAtϕ2,j ,BoxAtj ,Heavyj}.

The moving actions transition the agent from one position
to the other, and are independent of the effects of other agent
actions, e.g., Rightϕ = {(AgentAtϕ,1,¬AgentAtϕ,1 ∧
AgentAtϕ,2), (AgentAtϕ,2,¬AgentAtϕ,2 ∧AgentAtϕ,3)}.
The only joint effect is for the JointPush action –
Eff (PushUpϕ,2, a2) where a2 is some other action, are
identical to the independent effects of action a2, while
Eff (PushUpϕ1,2,PushUpϕ2,2) = {(φ,¬BoxAt2,2)}, that
is, if and only if the two agents push the heavy box jointly, it
(unconditionally) gets moved out of the grid.

We define sensing actions for boxes — SenseBoxϕ,j , with
precondition Pre(SenseBoxϕ,j) = AgentAtϕ,j , no effects,
and Obs(SenseBoxϕ,j) = BoxAtj,j . The goal is to move
all boxes out of the grid, i.e.,

∧
j ¬BoxAtj,j .

In the following we will use the term projected sub-tree
to denote a tree that is obtained from the original policy tree
by removing some nodes. When a node n labeled by a non-

sensing action is removed, the parent of n becomes the par-
ent of the child of n. A node n labeled by a sensing action
can only be removed if the two child subtrees of n are iden-
tical. In that case, the parent of n becomes the parent of one
of the identical subtrees.

3 The QDec-FP Algorithm
QDec-FP (Shekhar, Brafman, and Shani, 2019) operates in
three stages. (1) Generating a team solution skeleton. (2) Ex-
tending the projection of the team solution for each single
agent. (3) Aligning the single agent plan trees.

In the first step, the MA problem is transformed into a
single-agent problem by treating all actions as if executed by
the same meta-agent. This meta-agent can apply any agent’s
action and and it is aware at each stage of the results of all
sensing actions. We denote the resulting team plan as τteam.

In the second step, from τteam, QDec-FP generates for
each agent ϕi a projection τϕi

. To obtain the projection we
first remove from the tree all non-sensing actions except
those executed by agentϕi. Second, we remove from the tree
all private actions of all agents, leaving only nodes labeled
by public actions. Furthermore, for each action a in τϕi , we
remove all its public preconditions, as they are guaranteed
to be supplied by some public action in τteam. Finally we
remove redundant sensing actions — observations that do
not influence how ϕi acts. These are sensing actions where
both subtrees below the observation are identical, from the
perspective of agent ϕi.

An example of a team solution, its projection, and the
compacted projection is given in Figure 2. In Figure 2A, we
can see the team solution, containing both private and pub-
lic actions of the two agents. The team plan assumes shared
knowledge. We can see, e.g., that in the left branch, only
agent ϕ1 senses for the existence of the heavy box, and then
the agents jointly push it. Figure 2B shows the projected tree
of ϕ1. All private actions of both agents were removed, and
all sensing actions of both agents remain. Here, no sensing
action was redundant. Figure 2C shows the projected tree of
ϕ2. Here, also the public push action executed by ϕ1 in the
team plan is removed. Furthermore, as ϕ2 operates identi-
cally in both subtrees of the team plan, we remove the sens-
ing action at the root of the team plan.

The projected tree is typically not executable by the agent.
It contains sensing actions that are executed by other agents,
and some actions require additional preconditions, due to the
removal of private actions. Next, QDec-FP solves a single-
agent contingent planning problem for each agent ϕi that re-
quires ϕi to make τϕi

executable by adding sensing actions
and private actions. QDec-FP does not add public actions, as
they could interfere with the policies of the other agents by,
e.g., consuming a precondition that is needed.

If some τϕi is not solvable, QDec-FP backtracks and
seeks a new team solution. If all τϕi are solvable, we know
that there is a solution, and all that remains is to align the
different policies to ensure that agent actions are executed in
the right order – as reflected by the team policy. This is done
by inserting noop actions to postpone actions as need be.

While the above is a general scheme, it requires an under-
lying single-agent off-line contingent planner, i.e., a contin-

SB

P

SB

SB

GoalJP

JP

F

T F

T

T

Goal

Goal

Goal

SB

SB

SB

Goal

JP

F

T F

T

T

Goal

Goal

Goal

JP

F

F

SB

JP

FT

Goal

Goal

𝜑1

𝜑2

𝜑1

𝜑1

𝜑1

𝜑1

𝜑2

𝜑2

𝜑2

(A)

P
𝜑1

𝜑1

𝜑1

𝜑1

𝜑2

𝜑1

𝜑2

(B) (C)

𝜑1,𝜑2

𝜑1,𝜑2

Figure 2: (A) Team plan tree τteam for a problem with two agents, a light box and a heavy box that need to be outside at the
edge of the grid in the goal state. (B) The projection of τteam to ϕ1 for which all the sensing actions of τteam are non-redundant
and remain. (C) A compacted projection for ϕ2 in which no sensing action by ϕ1 is required.

gent planner that generates complete policies. For this pur-
pose we use the CPOR contingent planner (Komarnitsky and
Shani, 2016). CPOR itself calls an online contingent plan-
ner, SDR (Shani and Brafman, 2011). SDR generates a sin-
gle execution branch that corresponds to the true initial state.
In the case of CPOR, a different “true” initial state is selected
by the algorithm until all states have been covered.

While CPOR is the most scalable offline contingent plan-
ner currently, it does have a major weakness — it does
not perform backtracking. QDec-FP implemented a certain
backtracking ability on top of it by modifying the planning
problem with an additional, sound, constraint, so that the
previous solution cannot be generated again. However, this
limits the number of backtracks that are practically possible.

The reliance on an online solver that focuses on one
branch at a time has important implications for the QDec-FP
implementation. The SDR solver is not aware of the choices
made in alternative branches. This can lead to a subtle issue
when reasoning about the knowledge of different agents, as
we later discuss in the case of signaling.

4 The QDec-FPS Planner

We now describe our improved version of the QDec-FP
planner, which we call the QDec-FPS (that allows for Sig-
naling) planner. The QDec-FPS algorithm has identical
high-level structure as QDec-FP, but modifies the way the
team problem is solved, and adds a pre-processing mech-
anism that generates macros that enable signaling. While
the ideas underlying this extension — modeling the knowl-
edge of different agents and the use of signaling — are gen-
eral, we also explain the particular technical mechanisms re-
quired for integrating these ideas into QDec-FPS.

4.1 Agent Specific Knowledge

QDec-FP uses, through the CPOR planner, the SDR trans-
lation from contingent planning to classical planning. This
translation maintains, for each proposition p, two proposi-
tions: Kp and K¬p, denoting knowing that the value of p is
true or false, respectively. SDR then transforms each precon-
dition p of an action to Kp. That is, in addition to requiring
that the action will be executable only when p holds, the
planner also requires that the agent will know that p holds.
The agent can obtain Kp as a result of a sensing action over
the value of p.

The translation ensures thatKp holds in a belief state only
if p holds in all possible worlds. This is done by reasoning
about all the specific possible worlds explicitly. The state
description in the classical translation contains the current
state of the world given every possible initial state, in the
form of Kp|s, where p is a proposition, and s is a possible
state. The translation also contains actions that allow deduc-
ing new knowledge facts, called merge and refutation ac-
tions (Palacios and Geffner, 2009). Thus, the agent can also
obtainKp if for every currently possible state s,Kp|s holds.

As QDec-FP solves the team problem as a single-agent
planning problem, the planner treats all agents as part of a
single centralized agent, and the knowledge of this agent re-
flects the combined knowledge of all agents. Thus, when one
agent observes that p holds, other agents can use this knowl-
edge, without observing the value of p themselves. This is
inconsistent with the real plan tree, where each agent must
independently ensure that p holds, before executing an ac-
tion that requires p as precondition.

In QDec-FPS, we augment the translation that is used by
SDR to be agent aware. Instead of propositions of the form
Kp denoting combined knowledge, the augmented transla-
tion uses propositions of the form Kϕp, denoting that only
agent ϕ knows that p holds. Now, the precondition p of an

action that is executed by agent ϕ is replaced in the aug-
mented translation by Kϕp. The effect of a sensing action
executed by ϕ is that only the sensing agent ϕ knows the
value of p, i.e., either Kϕp or Kϕ¬p. The same holds for
the merge and refutation actions, which now provide agent-
specific knowledge.

This modification forces the underlying planner to in-
sert sensing actions by different agents to ensure they have
the knowledge required to perform their actions, whereas
in QDec-FP, because all agents are treated as one, it was
enough if some other agent performed this sensing action. If
an agent has an action with a precondition p, the team plan
will ensure that the agent first senses or learns the value of
p. If the agent cannot sense or learn the value of p, such an
action will not be part of a generated team plan.

This leads to the generation of skeleton team plans that
better account for agent abilities, and are therefore less likely
to lead to a failure when each agent extends the skeleton
plan. Consequently, it reduces the number of needed back-
tracks. This team plan, however, may not be executable in
a distributed manner. This is because the team plan may
require agents to execute different actions under different
branches, among which they cannot differentiate. This re-
quires additional sensing actions, which will be added later.

In addition, the new translation allows us to solve prob-
lems that QDec-FP could not. Consider, for example, a prob-
lem where the values of p and q are always correlated. Agent
ϕ1 can observe only p, and agent ϕ2 can only observe q. If
ϕ2 needs to execute an action with precondition p, QDec-FP
might add the action of sensing p by ϕ1 in the team plan.
This team plan cannot be later extended by ϕ2 to a valid
local plan. QDec-FPS would correctly avoid this team plan
and consider team plans where ϕ2 observes q, and then rea-
sons about p.

The new translation is more demanding and generates
classical planning problems that are harder to solve. Because
of this, it is able to detect unsolvable problems faster. On the
other hand, in the special case of agents with identical capa-
bilities, there are problems that are solvable by QDec-FP but
not by QDec-FPS. In these problems, QDec-FP generates a
simple team solution that lacks many sensing actions. But
adding them in the projected single-agent planning problems
is easy because all agents can apply all actions. However,
this simple team solution of QDec-FP is not a legal solution
to the more complex team problem QDec-FPS generates.
This, more complex problem, requires numerous backtracks
to solve, making it unsolvable in the given time.

4.2 Signaling
If agent ϕi can sense p but agent ϕj cannot, ϕi might be able
to communicate the value of p to ϕj . It could do this directly,
if an explicit communication action exists, or indirectly, by
setting the value of some variable q that agent ϕj can sense,
to be correlated with the value of p. In fact, explicit commu-
nication can be viewed as correlating the value of a channel
variable with p. Signaling consists of the following steps (1)
Agent ϕi senses p. (2) Agent ϕi sets the value of q to the
value of p. (3) Agent ϕj senses q. (4) ϕj reasons about the
value of p.

Notice that (2) is not a restriction on a single branch of
the plan, but a restriction on a sub-tree. ϕi must ensure that
p ↔ q, which means that it needs to act differently in the
branch where p is true and in the branch where p is false.

To operationalize this idea, we suggest to model the sig-
naling process as a macro. In our context, macros are not
simply a sequence of actions, but rather a part of a sub-tree.

To construct such macros, we first must discover the pos-
sible signaling options. We preprocess the domain seeking
qaudruples (ϕi, p, ϕj , q) such that (1) ϕi can sense p but ϕj
cannot. (2) ϕj can sense q. (3) ϕi can modify the value of q.
For simplicity, we consider only propositions q that can be
affected by a single action that does not change the value of
any other public proposition. This can be extended to more
complex sub-plans for modifying the value of q.

For each such quadruple, we add the macro-action
signal(ϕi, p, ϕj , q). This macro is treated by the planner
similar to a sensing action, which has two possible out-
comes: in one of them p ∧ q holds, and in the other ¬p ∧ ¬q
holds. Unlike the pure sensing actions we use, this action
changes the state of the world, as well, ensuring this corre-
spondence between the values of p and q.

Given a team plan with a signaling macro, we first expand
the macro as indicated above: First, ϕi senses the value of p.
For each of the two resulting branches, it must ensure that q’s
value is appropriately correlated, by applying actions that af-
fect q’s value appropriately. Then, we add in each branch a
sensing action aq where ϕj senses the value q. While regu-
lar sensing actions have two possible children, aq has only
a single child in the team plan because, at the team level, its
outcome is known. When projected to ϕj’s local plan, how-
ever, aq appears like a regular sensing action. This macro
expansion is described in Figure 3.

In the next step, the projection of the team plan contain-
ing the macro expansion is solved by each agent. This re-
quires, in particular, that agent ϕi will change the value of q
as needed in each branch, and that both agents perform their
sensing actions — ϕi over p and ϕj over q.

Figure 3 shows an example of this process, where two
agents, ϕ1 and ϕ2 must jointly push a heavy box. ϕ1 can
sense the box, but ϕ2 can only sense whether a light is on.
ϕ1 must hence signal to ϕ2 about the box by turning on the
light, which is originally off. Figure 3A shows the inserted
macro into the team plan. Figure 3B shows the team plan
after the macro expansion — ϕ1 senses the box, and then
turns on the light if needed to be, and then ϕ2 senses the
light, and they both jointly push the box. Figure 3C shows
the projected single agent plan trees for ϕ1 and ϕ2. Note
that the tree for ϕ2 contains two children for the sense-light
action, although the team plan does not. This special case is
handled in the projection creation for which a time tick (T)
is shown in the right (just for a reference).

In practice, adding this macro on top of an online contin-
gent solver that focuses on a single branch at a time, such
as SDR, is not straightforward. To address this, we do the
following: We add an action by ϕi that can be viewed as a
commitment to ensure that p↔ q holds. This action is con-
strained to be followed immediately by the action of sensing
p by ϕi. At this point, in the team plan, if agent ϕj needs to

signal-macro(𝜑1,box,𝜑2,light)

box ∧ light⁓box ∧ ⁓light

JPGoal
𝜑1,𝜑2

SB

switch-on
𝜑1

𝜑1

sense light
𝜑2

sense ⁓light
𝜑2

JP

⁓box box

light

⁓light

𝜑1,𝜑2

Goal

Goal

Goal

SB

box

switch-on
𝜑1

𝜑1

Goal

⁓box

sense light

light

JP
𝜑2

𝜑2

Goal

⁓light

JP
𝜑1

light

⁓light

light ∨ ⁓light

T = t

T = t+1

T > t+1

(A) (B) (C)

⁓light

Figure 3: Signaling in the QDec-FPS planner. (A) A team plan with the signaling macro action. (B) The team plan following
the macro expansion. (C) Projected trees for ϕ1 (top) and ϕ2 (bottom).

know the value of p, it can use the fact that p↔ q to deduce
it from the value q. To ensure it learns the value of p, we
force the action of sensing q in both branches. As above, the
team plan is post-processed to ensure that ϕi does indeed
ensure the validity of p↔ q following the sensing action.

QDec-FPS Properties. Due to lack of space, we do not
discuss soundness and completeness in depth. We briefly
note that soundness follows the same lines as that of QDec-
FP. With signaling, this also requires that the knowledge re-
flected by the signaling macro is modeled correctly and that
no other proposition is impacted by it.

QDec-FPS is incomplete due to CPOR’s lack of back-
tracking mechanism. But assuming a contingent solver that
is able to enumerate solutions, instead, a similar complete-
ness argument to QDec-FP holds. We note that signaling
does not make the planner theoretically more powerful, in
that case, but it does make it more powerful in practice.

5 Empirical Evaluation
We now demonstrate the scalability and applicability of our
new approach by comparing QDec-FPS with QDec-FP on
the Box-Pushing and Table-Mover domains. Both the QDec-
FP and QDec-FPS solvers are implemented in C#, and were
run on a Windows 10, 64 bit machine with i7 processor,
2.8GHz CPU, and 16Gb RAM. It times out after 10 min-
utes. IMAP was excluded as QDec-FP was already shown
to scale better than IMAP (Bazinin and Shani, 2018).

5.1 Domain Description
We consider two domains:

Box-Pushing (BP): There are boxes situated in a grid-like
structure. Each box is supposed to moved to its destination
location, in this case at the edge of the grid, i.e., at the end
of the column the box appears in. Each box is either at some

location in the grid or at the goal location. An agent needs
to be in the same grid cell where a box exists to observe it
and to push it. Boxes are either heavy or light. Two agents
are required to push a heavy box successfully, while a single
agent can push a light box. Agents can also move between
two adjacent locations in the four primary directions. In this
domain, we have uncertainty about the initial locations of the
boxes. The agents are non-homogenous — different agents
can observe and push different boxes.

Table-Mover (TM): The domain consists of a number of
tables and rooms, and agents that can move between con-
nected rooms. The initial location of each table is uncertain,
and agents must move each table to its dedicated goal loca-
tions. Like BP, agents in TM are non-homogeneous. Differ-
ent agents can sense the location of different tables. Each ta-
ble has some fragile items on top of it, and these objects must
remain intact. To achieve this, agent must perform collabo-
rative actions to manipulate the table, for example, collabo-
rative actions like 2move-table, 2lift-table, 2drop-table. The
actions 2lift-table and 2drop-table, indicate that two agents,
respectively, lift and drop a table simultaneously, keeping
the objects on the table intact in the process.

5.2 Experimental Results
We compare the QDec-FPS and QDec-FP solvers on the ba-
sis of the policy quality (max-width, max-height), runtime
(time), and the number of backtracks they require to solve
a contingent planning problem. max-width and max-height
refer to maximum number of branches and the maximum
height of all individual solution trees obtained for the agents.
The number of branches is also indicative of the number of
sensing actions performed, as branching occurs following an
observation. The planner backtracks when at least one of the
single-agent problems, obtained by decomposing τteam, is
unsolved by CPOR.

Domain Ins (#agt) Objects Max-width Max-height Time (sec) BT
fp fps fp fps fp fps fp fps

BP

B1 (3) 16 8 5 23 18 3.59 2.91 0 0
B2 (4) 16 12 10 19 19 5.3 6.1 0 0
B3 (9) 36 64 * 24 * 25.3 * 0 *
B4 (3) 12 6 8 16 15 13.65 2.9 4 0
B5 (3) 11 4 4 14 11 16.39 1.17 9 0
B6 (3) 12 - 6 - 12 - 13.58 47+ 4
B7 (3) 12 8 8 18 19 158.89 3.87 41 0
B8 (3) 12 8 8 17 21 111.6 4.05 26 0
B9 (3) 13 16 14 21 19 121.42 5.6 19 0
B10 (3) 16 16 15 26 29 155.83 9.69 33 0
B11 (5) 20 * 24 * 32 * 75.21 * 1
B12 (5) 20 * 24 * 37 * 365.9 * 6
B13 (2) 12 na 2 na 2 na 1.2 na 1
B14 (3) 13 na 4 na 7 na 5.5 na 1
B15 (3) 13 na 4 na 6 na 8.9 na 2
B16 (4) 15 na 8 na 14 na 17.6 na 2

TM

T1 (3) 10 8 7 20 16 2.68 2.78 0 0
T2 (4) 12 16 13 21 17 7.84 8.26 0 0
T3 (4) 15 12 16 34 26 8.74 12.39 0 0
T4 (5) 14 19 22 22 24 20.5 43.58 0 0
T5 (5) 16 12 14 32 25 9.7 11.2 0 0
T6 (3) 8 2 2 8 8 11.01 0.61 7 0
T7 (3) 10 8 7 20 16 34.5 41.8 8 8
T8 (3) 10 8 8 24 22 37.87 22.45 9 4
T9 (3) 10 - - - - 140.32 29.73 31 6
T10 (4) 12 16 16 23 22 6.68 152.18 0 14
T11 (5) 16 16 16 30 35 274.5 56.15 27 3
T12 (2) 10 na 2 na 9 na 1.7 na 0
T13 (3) 12 2 2 16 11 17.59 2.32 9 0
T14 (2) 12 na 4 na 17 na 6.81 na 0
T15 (3) 12 na 4 na 19 na 11.68 na 1

Table 1: Performance comparison of QDec-FP and QDec-
FPS planners. Ins (#agt) is instance number with the number
of acting agents in the brackets. Object denotes the number
of objects considered in each problem. Column BT is for the
number of times a planner backtracks to solve a problem. *
is time out, ’-’ represents the planner finds it unsolvable, and
na is not applicable to a solver (when signaling is required).
fp is QDec-FP and fps is QDec-FPS. The best approach is
shown in bold, selected solely on the basis of time.

Table 1 compares the performance of our QDec-FPS plan-
ner with QDec-FP. The table is divided in two major parts,
one for each domain. Within each domain, dashed lines
separate three problem classes: homogeneous agents, non-
homogeneous agents, and non-homogeneous agents that re-
quire signaling to solve a problem.

In general, QDec-FPS scales much better than QDec-FP
in problems with three up to five agents. An increase in the
number of objects that usually makes problems more com-
plex had minor impact on the running time of QDec-FPS as
opposed to QDec-FP. For many problems, QDec-FPS needs
to backtrack much fewer times than QDec-FP, and as a re-
sult, QDec-FPS solves the problems much faster.

Increasing the number of agents has an adverse effect on
the performance of the QDec-FPS planner, as the new trans-
lation makes the team problem much harder to solve. In fact,
for the BP instance B3 with nine identical agents, the prob-
lem is solvable by QDec-FP but QDec-FPS times out. We
discussed the reasons for this earlier. On the other hand,
problems B11 and B12 were solved by the QDec-FPS plan-
ner but were unsolved by QDec-FP. This is most likely due
to the many numbers of backtracks required.

We use a boolean variable SigFlag that signifies that,
when enabled, the original problem description will be pre-
processed. Thus the domain will be augmented with all pos-
sible signaling macros. To test signaling, we enabled SigFlag
for the problems from B13 to B16 in the BP domain. These

problems require both signaling and backtracking and can-
not be solved by QDec-FP (shown as na). For them, we note
that QDec-FPS returned no solution when the SigFlag was
disabled. In the future, we intend to augment QDec-FPS
with an ability to automatically turn on SigFlag by using
an approximate reachability analysis to determine whether
signaling is required.

The bottom half of the table shows the results obtained in
the Table-Mover (TM) domain. In most problems the agents
are non-homogeneous. In contrast to the BP domain, in the
TM domain each public action is a collaborative action,
e.g., 2lift, 2move, 2drop. Similar to the BP domain, when
backtracking is not required to solve a problem, e.g., the
over-simplified instances T1 up to T5, the QDec-FP solver
takes less time to find a plan tree than the QDec-FPS solver.
Whenever problems are more complex, and backtracking
is required, e.g., for the instances T6 and T11, QDec-FPS
solves them faster, generally, as it requires fewer backtracks
than QDec-FP. There are exceptions, such as instance T10
in which QDec-FPS backtracked 14 times.

The outer loop of Algorithm 1 (Shekhar, Brafman, and
Shani, 2019) goes over every possible team solution before
it concludes that there is no solution. Because there are fewer
solutions to the team problem QDec-FPS generates, it is also
able to conclude that no solution exists faster than QDec-
FP, at times. For example, in instance T9, QDec-FPS back-
tracked only six time before concluding that there is no so-
lution, compared to 31 backtracks for QDec-FP.

We enabled SigFlag for the problems T12-T15 in the
TableMover domain. Their configuration is simpler than the
previous problems, with fewer agents. Problem T13 is in-
teresting because it can be solved without signaling, but it
is solved even faster with signaling. There are three agents,
ϕ1, ϕ2, and ϕ3 such that ϕ1 and ϕ3 together are capable to
solve this problem without signaling. QDec-FP solved T13
while it backtracked nine times. As we purposely placed
ϕ3 farther from the table’s location, QDec-FPS generated
a plan where ϕ1 signaled to ϕ2 the table’s location and they
achieved the goal together, without ϕ3. This solution was
generated much quicker and with no backtracks. If we dis-
allow signaling (SigFlag is disabled), QDec-FPS still solves
this problem with zero backtrack, but it takes more time than
when SigFlag is enabled.

6 Conclusion
In this paper we describe QDec-FPS, an extension of the
QDec-FP planner, that solves a multi-agent planning prob-
lem by solving a number of single-agent planning problems.
The first step is to solve the team problem – where QDec-
FPS makes stronger requirements on the plan than QDec-
FP by accounting for knowledge of individual agents. This
leads to team plans that are more informed, and usually en-
ables faster solution time with fewer backtracks. More im-
portantly, by reasoning about the knowledge of individual
agents explicitly, QDec-FPS is able to use signaling – im-
plicit communication through the state of the world, to share
information among agents and solve planning problems that
were not practically solvable by QDec-FP.

Acknowledgements. We thank the reviewers for their
useful comments. This work was supported by ISF Grants
1651/19, by the Israel Ministry of Science and Technology
Grant 54178, and by the Lynn and William Frankel Center
for Computer Science.

References
Bazinin, S., and Shani, G. 2018. Iterative planning for de-

terministic QDec-POMDPs. In GCAI 2018, 15–28.

Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The complexity of decentralized control of
Markov decision processes. Mathematics of Operations
Research 27:819–840.

Bonet, B., and Geffner, H. 2014. Belief tracking for plan-
ning with sensing: Width, complexity and approxima-
tions. J. Artif. Intell. Res. 50:923–970.

Brafman, R. I., and Domshlak, C. 2008. From one to
many: Planning for loosely coupled multi-agent systems.
In ICAPS, 28–35.

Brafman, R. I.; Shani, G.; and Zilberstein, S. 2013. Qual-
itative planning under partial observability in multi-agent
domains. In Proceedings of the Twenty-Seventh AAAI
Conference on Artificial Intelligence, July 14-18, 2013,
Bellevue, Washington, USA.

Crosby, M.; Jonsson, A.; and Rovatsos, M. 2014. A single-
agent approach to multiagent planning. In ECAI 2014
- 21st European Conference on Artificial Intelligence,
18-22 August 2014, Prague, Czech Republic - Includ-
ing Prestigious Applications of Intelligent Systems (PAIS
2014), 237–242.

Hoffmann, J., and Brafman, R. 2005. Contingent planning
via heuristic forward search with implicit belief states. In
Proc. ICAPS, volume 2005.

Komarnitsky, R., and Shani, G. 2016. Computing contingent
plans using online replanning. In AAAI, 3159–3165.

Oliehoek, F. A., and Amato, C. 2016. A Concise Intro-
duction to Decentralized POMDPs. Springer Briefs in
Intelligent Systems. Springer.

Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded
width. J. Artif. Intell. Res. 35:623–675.

Shani, G., and Brafman, R. I. 2011. Replanning in domains
with partial information and sensing actions. In IJCAI
2011, Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence, Barcelona, Catalonia,
Spain, July 16-22, 2011, 2021–2026.

Shekhar, S., and Brafman, R. I. 2018. Representing and
planning with interacting actions and privacy. In Proceed-
ings of the Twenty-Eighth International Conference on
Automated Planning and Scheduling, ICAPS 2018, Delft,
The Netherlands, June 24-29, 2018, 232–240.

Shekhar, S.; Brafman, R. I.; and Shani, G. 2019. A fac-
tored approach to deterministic contingent multi-agent

planning. In Proceedings of the Twenty-Ninth Interna-
tional Conference on Automated Planning and Schedul-
ing, ICAPS 2018, Berkeley, CA, USA, July 11-15, 2019,
419–427.

