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1 Introduction

In this paper, we consider Simple Epistemic Planning Problems (SEPP) of the
form (A,B, π(])) where A and B are epistemic formulas and π(]) is a patron,
] being a new atomic symbol. Patrons are expressions of the form ]!, �a]!,
1
2 (a, ]), 1

2 (a,�b]), (a, ]) and (a,�b]) where a and b are agents. They correspond
to actions like public announcements (]!, �a]!), semi-private announcements
( 1
2 (a, ]), 1

2 (a,�b])) and fully-private announcements ((a, ]), (a,�b])). To solve
the SEPP (A,B, π(])) is to determine if there exists an epistemic formula C
such that � A→ 〈π(C)〉B, π(C) being the actions obtained from π(]) and C by
replacing the unique occurrence of ] by C.
In this paper, we show how to solve SEPP. In particular, we associate to an
arbitrary given SEPP (A,B, π(])), a necessary and sufficient condition for the
existence of a solution. Moreover, when such a solution exists, we construct a
most general one.

2 Background of DEL

2.1 Syntax of Epistemic Logic

Let P be a countable set of atoms, and AGT a finite set of agents.

Definition 1. (Language of epistemic logic) The language of multi-agent epis-
temic logic, LK is defined as follows.

A ::= p | ⊥ | ¬A | (A ∧A) | �aA

where �aA is read ”agent a knows A”. We use ♦aA ::= ¬�a¬A.
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2.2 Semantics of Epistemic Logic

Epistemic models are Kripke models based on equivalence relations.

Definition 2. An epistemic model is a structure M = (W,∼, V ), where

– W is non-empty set of worlds.
– ∼: a ∈ AGT 7→∼a⊆W×W is a function associating to each agent a ∈ AGT

an equivalence relation ∼a on W .
– V : P → 2W is a valuation function on W .

For any w ∈W , the pair s = (M,w) is called an epistemic state and we usually
use M,w instead of (M,w).

Let M = (W,∼, V ) be an epistemic model and w ∈ W . We define the satisfia-
bility of a formula A in M,w, (in symbols M,w � A) as follows:

– M,w � p iff w ∈ V (p),
– M,w 2 ⊥,
– M,w � ¬A iff M,w 2 A,
– M,w � A ∧B iff M,w � A, and M,w � B,
– M,w � �aA iff for all w′ ∈W , if w ∼a w

′ then M,w′ � A.
As a result,

– M,w � ♦aA iff there exists w′ ∈W such that w ∼a w
′ and M,w′ � A

2.3 Action Models and Epistemic Actions

Action models are finite relational structures that can also be seen as syntactic
objects [3, 8].

Definition 3. (Action model) An action model is a structure M = (S,∼,pre)
such that

– S is a non-empty and finite set of actions.
– for all a ∈ AGT , ∼a is an binary relation on S.
– pre : S→ LK is a function that assigns a precondition pre(s) ∈ LK to each

s ∈ S.

For any s ∈ S, the pair α = (M, s) is called an epistemic action.

In this paper, we will consider specific epistemic actions like public announce-
ments, semi-private announcements and private announcements.
Public announcements constitute a specific kind of action models [3, 8, 12]. The
public announcement of A ∈ LK is the action model M = (S,∼,pre) where

– S = {s},
– for all a ∈ AGT , ∼a= {(s, s)},
– pre(s) = A.
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We will denote the epistemic action (M, s) by the notation A! and it is read ”all
agents receive the message A as a public announcement”.
Semi-private announcements constitute another specific kind of action models
[4–6, 10, 11]. The semi-private announcement of A ∈ LK to agent a ∈ AGT is
the action model M = (S,∼,pre) where

– S = {s, t},
– for all b ∈ AGT\{a}, ∼b= {(s, s), (t, t), (t, s), (s, t)} and ∼a= {(s, s), (t, t)},
– pre(s) = A and pre(t) = ¬A.

We use the notation 1
2 (a,A) for the epistemic action (M, s) and it is read ”agent

a received the message A as semi-private announcement”.
Fully-private announcements constitute another specific kind of action models
[4, 8, 9].
The private announcement of A ∈ LK to agent a ∈ AGT is the action model
M = (S,∼,pre) where

– S = {s, t},
– for all b ∈ AGT\{a}, ∼b= {(s, s), (t, t), (s, t)} and ∼a= {(s, s), (t, t)},
– pre(s) = A and pre(t) = >.

We use notation (a,A) for the epistemic action (M, s) and it is read ”agent a
received the message A privately”.

2.4 Update Product

Execution of epistemic actions may change the world and also agents’ informa-
tion. It is formalised by the update product of an epistemic model and an action
model.

Definition 4. (Update product) The update product of epistemic model M =
(W,∼, V ) with action model M = (S,∼,pre) is the epistemic model M ⊗M =
(S′,∼′, V ′) such that

– S′ = {(w, s) | w ∈W, s ∈ S and M,w � pre(s)},
– (w, s) ∼′a (v, t) iff w ∼a v and s ∼a t,
– (w, s) ∈ V ′(p) iff w ∈ V (p).

Of course, this update product exists only if there exists w ∈W and there exists
s ∈ S such that M,w � pre(s).

2.5 Syntax and Semantics of Action Model Logic

Definition 5. (Language of Action Model Logic) The language LAM of Action
Model Logic is defined as follows:

A :: p | ⊥ | ¬A | (A ∧A) | �aA | [M, s]A
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where [M, s]A is read ”if action (M, s) is executable, then after its execution, A
holds”. We use 〈M, s〉A ::= ¬[M, s]¬A.

Definition 6. Given epistemic state (M,w) with M = (W,∼, V ). We define
the satisfiability of a formula A in M,w (in symbols M,w � A as follows:)

– M,w � p iff w ∈ V (p)
– M,w � ¬A iff M,w 2 A
– M,w � A ∧B iff M,w � A and M,w � B
– M,w � �aA iff for all w′ ∈W , if w ∼a w

′ then M,w′ � A
– M,w � [M, s]A iff if M,w � pre(s) then (M ⊗M, (w, s)) � A

As a result,

– M,w � 〈M, s〉A iff M,w � pre(s) and (M ⊗M, (w, s)) � A.

A formula A is valid (in symbol � A) if M,w � A for any epistemic state M,w.

2.6 Some Validities

The following formulas are valid and will be used later in section 4 for solving
simple epistemic planning problem.
�aA→ A (truth)

�aA→ �a�aA positive introspection

¬�aA→→ �a¬�aA negative introspection

[M, s]p↔ (pre(s)→ p) atomic permanence
[M, s]¬A↔ (pre(s)→ ¬[M, s]A) action and negation
[M, s](A ∧B)↔ [M, s]A ∧ [M, s]B action and conjunction

[M, s]�aA↔ (pre(s)→
∧

s∼at�a[M, t]A) action and knowledge

As is well-known, the axiom for action and knowledge can be written as follows
in the case of public, semi-private and fully-private announcements:

– [A!]�aB ↔ (A→ �a[A!]B),
– [ 12 (a,A)]�aB ↔ (A→ �a[(a,A)]B),
– [ 12 (a,A)]�bB ↔ (A→ �b[(a,A)]B ∧�b[(a,¬A)]B) where a 6= b.
– [(a,A)]�aB ↔ (A→ �a[(a,A)]B),
– [(a,A)]�bB ↔ (A→ �bB) where a 6= b.

Later in Section 4, we will also use the following admissible rules:

D→�aE
♦aD→E

♦aD→E
D→�aE

3 Epistemic Planning Problem

An epistemic planning problem T = (s0, E,Ag) consists of: a finite epistemic
state s0 = (M,w) called the initial state; a finite set of epistemic actions E; a
goal formula Ag ∈ LK . A sequence (α1, ..., αn) of actions from E is a solution to
the epistemic planning problem T if M,w � 〈α1〉...〈αn〉Ag.
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In its full generality, epistemic planning problem is undecidable even if the modal
depth of preconditions is bounded by 2 [7]. In our setting, the considered epis-
temic actions will be public announcements, semi-private announcements and
fully-private announcements. Since sequences of such actions can be written as
a unique action, we introduced the following variant of epistemic planning.
Let ] be a new symbol representing an unknown formula. Let L]

K be LK ex-

tended by the new symbol ]. In L]
K , the symbol ] is considered as an atom.

Patrons (denoted π, π′ and etc) are expressions of the following forms:

– ]!: a public announcement saying that ] holds.
– �a]!: a public announcement saying that agent a knows that ] holds.
– 1

2 (a, ]): a semi-private announcement to agent a saying that ] holds.
– 1

2 (a,�b]): a semi-private announcement to agent a saying that agent b knows
that ] holds.

– (a, ]): a fully-private announcement to agent a saying that ] holds.
– (a,�b]): a fully-private announcement to agent a saying that b knows that
] holds.

Note that each patron π contains exactly one occurrence of the new symbol ].
Moreover, for all A ∈ LK , let π(A) be the expression obtained after replacing
by A the unique occurrence of ] in π. Obviously, π(A) is an epistemic action.
Simple epistemic planning problems are defined as follows.

Definition 7. A simple epistemic planning problem (SEPP) is a triple (A,B, π)

where A,B ∈ LK and π is a patron. A formula C ∈ L]
K is a solution to the SEPP

(A,B, π) if � A→ 〈π(C)〉B.

A formula C ∈ L]
K is a most general solution to (A,B, π) if � A → 〈π(C)〉B

and for all solutions D to (A,B, π), D is equivalent to an instance of C.

Not only, we will interest in the problem of solving a given SEPP (A,B, π), but
we will also interest in the problem of finding its most general solution.

Example 1. Consider the SEPP (A,B, ]!) where A = �1p and B = �2p. It
corresponds to the formula �1p → 〈]!〉�2p. To solve this SEPP is to find a
public announcement C such that in any epistemic state, C holds each time the
agent 1 knows p and after announcing C, the agent 2 knows p.
In this case C = �1p is a solution since if agent 1 knows p then, after publicly
announcing �1p then the agent 2 knows p.

4 SEPP with public announcements

Let us see how to solve a SEPP of the form (A,B, ]!). This SEPP corresponds to

the formula A→ 〈]!〉B. To solve it is to find C ∈ L]
K such that � A→ 〈C!〉B. Let

P (]) = A→ 〈]!〉B. First, we will use the validities and admissible rules of Section

2.6 to obtain a formula P1(]) ∈ L]
K which has the same solutions as P (]) and
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for which it seems easier to compute a most general solution. Then considering
P1(]), we will find a necessary and sufficient condition for the solvability of P1(]).
Finally, assuming this necessary and sufficient condition holds, we will construct
a most general solution of P1(]).

Lemma 1. Let P (]) = A→ 〈]!〉(�aB∧♦bC) where B,C are Boolean formulas,
A ∈ LK and a, b ∈ AGT . Let B′ = (♦aA→ B). The following are equivalent:

1. � A→ B′ ∧ ♦b(B′ ∧ C).
2. P (]) is solvable.

Moreover, B′ is a solution of P (]) in that case.

Proof. Notice that the formulas A → 〈]!〉(�aB ∧ ♦bC) and (A → ]) ∧ (A →
�a[]]B)∧ (A→ 〈]〉♦bC)) are equivalent (remind that B and C are Boolean for-
mulas). Moreover, by using inference rules, one can easily show that the formulas
(A→ ]) ∧ (A→ �a[]]B) ∧ (A→ 〈]〉♦bC)) and P1(]) = (A→ ]) ∧ (]→ (♦aA→
B)) ∧ (A→ ♦b(] ∧ C)) have the same solutions as P (]).
(1 ⇒ 2) Suppose � A → B′ ∧ ♦b(B′ ∧ C). Hence, obviously, B′ is a solution of
P1(]).

(2⇒ 1) Suppose P1(]) has a solution D for some D ∈ L]
K . Consequently, � (A→

D) ∧ (D → (♦aA→ B)) ∧ (A→ ♦b(D ∧ C)). Hence, � A→ B′ ∧ ♦b(B′ ∧ C).

Lemma 2. Let P (]) = A→ 〈]!〉(�aB∧♦bC) where B,C are Boolean formulas,
A ∈ LK and a, b ∈ AGT . Let B′ = (♦aA → B). If P (]) is solvable then
there exists a most general solution of P (]): the formula D = (�bP1(]) ∧ ]) ∨
(¬�bP1(]) ∧B′) where P1(]) is the formula introduced in the proof of Lemma 1

Proof. Suppose P (]) is solvable. Hence, by Lemma 1, � A → B′ ∧ ♦b(B′ ∧ C).
Moreover, B′ is a solution of P (]). From the proof of Lemma 1, we know that
P1(]) has the same solution as P (]). We claim that

1. D is a solution of P (]),
2. for all solutions D′ of P (]), D′ is equivalent to an instance of D.

About the first claim, we have to show � P1(D). Notice that P1(D) is the
conjunction of the following formulas:

– A→ (�bP1(]) ∧ ]) ∨ (¬�bP1(]) ∧B′),
– (�bP1(]) ∧ ]) ∨ (¬�bP1(]) ∧B′)→ (♦aA→ B),

– A→ ♦b
((

(�bP1(]) ∧ ]) ∨ (¬�bP1(]) ∧B′)
)
∧ C

)
.

Since � A→ B′, the first formula above is equivalent toA∧�bP1(])→ �bP1(])∧]
which is obviously valid.
The validity of the second formula above is left as an exercise for the reader.
Since � A→ ♦b(B′∧C), the third formula above is equivalent to A∧�b(B

′∧C →
�bP1(]))→ ♦b(] ∧ C) which is obviously valid.
About the second claim, let D′ be a solution of P1(]). Hence, � P1(D′). Thus,

�
(

(�bP1(D′) ∧D′) ∨ (¬�bP1(D′) ∧B′)
)
↔ D′. Consequently, D′ is equivalent

to the instance of D obtained after having replaced each occurrence of ] in D
by D′.



Proposition 1. Let P (]) = A → 〈]!〉
(

(�k1B1 ∧ ... ∧ �kmBm) ∧ (♦l1C1 ∧ ... ∧

♦lnCn)
)

where Bi and Cj are Boolean formulas for 1 6 i 6 m and 1 6 j 6 n

and ki, lj ∈ AGT . Let B′ = (♦k1A → B1) ∧ ... ∧ (♦kmA → Bm). The following
are equivalent:

1. � A→ B′ ∧ ♦l1(C1 ∧B′) ∧ ... ∧ ♦ln(Cn ∧B′).
2. P (]) is solvable.

Moreover, B′ is a solution of P (]) in that case.

Proof. Similar to the proof of Lemma 1.

Proposition 2. Let P (]) = A → 〈]!〉
(

(�k1
B1 ∧ ... ∧ �km

Bm) ∧ (♦l1C1 ∧ ... ∧

♦lnCn)
)

where Bi and Cj are Boolean formulas for 1 6 i 6 m and 1 6 j 6 n

and ki, lj ∈ AGT . Let B′ = (♦k1
A → B1) ∧ ... ∧ (♦km

A → Bm). If P (]) is
solvable then there exists a most general solution of P (]): the formula D =

(

n∧
j=1

�ljP1(]) ∧ ]) ∨ (¬(

n∧
j=1

�ljP1(])) ∧B′) where

P1(]) = (A→ ]) ∧
m∧
i=1

(]→ (♦ki
A→ Bi))

n∧
j=1

♦lj (] ∧ Cj)

Proof. Similar to the proof of Lemma 2.

Proposition 3. Let P (]) = A→ 〈�1!]〉
(

(�k1
B1 ∧ ...∧�km

Bm)∧ (♦l1C1 ∧ ...∧

♦lnCn)
)

where Bi and Cj are Boolean formulas for 1 6 i 6 m and 1 6 j 6 n.

Let B′ = (♦k1
A→ B1) ∧ ... ∧ (♦km

A→ Bm). The following are equivalent

1. � A→ �1B
′ ∧ ♦l1(C1 ∧�1B

′) ∧ ... ∧ ♦ln(Cn ∧�1B
′)

2. P (]) is solvable.

Moreover, B′ is a solution of P (]) in that case.

Proof. The proof is similar to the proof of Lemma 1.

Proposition 4. P (]) = A → 〈�1]!〉
(

(�k1
B1 ∧ ... ∧ �km

Bm) ∧ (♦l1C1 ∧ ... ∧

♦lnCn)
)

where Bi and Cj are Boolean formulas for 1 6 i 6 m and 1 6 j 6 n.

Let B′ = (♦k1
A → B1) ∧ ... ∧ (♦km

A → Bm). If P (]) is solvable then there

exists a most general solution of P (]): the formula D = (

n∧
j=1

�1�ljP1(]) ∧ ]) ∨

(¬(

n∧
j=1

�1�ljP1(])) ∧ F ) where P1(]) = (♦1A → �1]) ∧
m∧
i=1

(�1] → (♦kiA →

Bi))

n∧
j=1

♦lj (�1] ∧ Cj)

Proof. The proof is similar to the proof of Lemma 2.
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5 Conclusion

In this paper, we introduced Simple Epistemic Planning Problem with public an-
nouncements. In this respect, we considered the associated formula, A → 〈]!〉B
and A→ 〈�]!〉B where A,B ∈ LKand found necessary and sufficient condition
for existence of a solution when announcements are public announcements. The
method mentioned for SEPP with public announcements is adaptable for SEPP
with semi-private announcements, fully-private announcements and group an-
nouncements [13]. In the case of SEPP with group announcement there is an
open problem for which we could not find a solution:

A→ 〈�1]1 ∧ ... ∧�n]n〉(
m∧
i=1

�kiBi ∧
n∧

j=1

♦ljCj).
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